APPLICATION OF INDIRECT HAMILTONIAN TOMOGRAPHY TO COMPLEX SYSTEMS WITH SHORT COHERENCE TIMES

被引:0
|
作者
Maruyama, Koji [1 ]
Burgarth, Daniel [2 ]
Ishizaki, Akihito [3 ,4 ]
Takui, Takeji [1 ]
Whaley, K. Birgitta [3 ,5 ]
机构
[1] Osaka City Univ, Dept Chem & Mat Sci, Sumiyoshi Ku, Osaka 5588585, Japan
[2] Aberystwyth Univ, Inst Math & Phys, Aberystwyth SY23 3BZ, Dyfed, Wales
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Berkeley Quantum Informat & Computat Ctr, Berkeley, CA 94720 USA
关键词
Hamiltonian tomography; complex system; dissipation; LASER-PULSE CONTROL; QUANTUM COHERENCE; EXCITON DYNAMICS; ENERGY-TRANSFER; BACTERIOCHLOROPHYLL PROTEIN; FMO COMPLEX;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The identification of parameters in the Hamiltonian that describes complex many-body quantum systems is generally a very hard task. Recent attention has focused on such problems of Hamiltonian tomography for networks constructed with two-level systems. For open quantum systems, the fact that injected signals are likely to decay before they accumulate sufficient information for parameter estimation poses additional challenges. In this paper, we consider use of the gateway approach to Hamiltonian tomography [1, 2] to complex quantum systems with a limited set of state preparation and measurement probes. We classify graph properties of networks for which the Hamiltonian may be estimated under equivalent conditions on state preparation and measurement. We then examine the extent to which the gateway approach may be applied to estimation of Hamiltonian parameters for network graphs with non-trivial topologies mimicking biomolecular systems.
引用
收藏
页码:763 / 774
页数:12
相关论文
共 50 条
  • [1] Coherence angles and coherence times in Hamiltonian systems with many degrees of freedom
    DAlessandro, M
    DAquino, A
    Tenenbaum, A
    [J]. PHYSICA A, 1997, 240 (1-2): : 115 - 125
  • [2] Relaxation Times for Hamiltonian Systems
    Maiocchi, Alberto Mario
    Carati, Andrea
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (02) : 427 - 445
  • [3] Relaxation Times for Hamiltonian Systems
    Alberto Mario Maiocchi
    Andrea Carati
    [J]. Communications in Mathematical Physics, 2010, 297 : 427 - 445
  • [4] Optical coherence tomography A sign of the times
    Green, Ari J.
    [J]. NEUROLOGY, 2010, 75 (15) : 1312 - 1313
  • [5] Application of LabVIEW: Complex Software Controlling of System for Optical Coherence Tomography
    Hosek, P.
    Prykari, T.
    Alarousu, E.
    Myllyla, R.
    [J]. JALA, 2009, 14 (02): : 59 - 68
  • [6] Coherence measure in Hamiltonian systems with many degrees of freedom
    D'Alessandro, M
    D'Aquino, A
    Tenenbaum, A
    [J]. PHYSICAL REVIEW E, 2000, 62 (04): : 4809 - 4825
  • [7] Short-time series optical coherence tomography angiography and its application to cutaneous microvasculature
    Wang, Qiang
    Gong, Peijun
    Cense, Barry
    Sampson, David D.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2019, 10 (01): : 293 - 307
  • [8] Some remarks on complex Hamiltonian systems
    Kaushal, RS
    Korsch, HJ
    [J]. PHYSICS LETTERS A, 2000, 276 (1-4) : 47 - 51
  • [9] Optical Coherence Tomography Velocimetry with Complex Fluids
    Malm, A.
    Waigh, T. A.
    Jaradat, S.
    Tomlin, R.
    [J]. 1ST INTERNATIONAL CONFERENCE ON RHEOLOGY AND MODELING OF MATERIALS (IC-RMM1), 2015, 602
  • [10] Complex regression Doppler optical coherence tomography
    Elahi, Sahar
    Gu, Shi
    Thrane, Lars
    Rollins, Andrew M.
    Jenkins, Michael W.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2018, 23 (04)