Brownian functionals in physics and computer science

被引:0
|
作者
Majumdar, SN [1 ]
机构
[1] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
来源
CURRENT SCIENCE | 2005年 / 89卷 / 12期
关键词
Brownian motion; first-passage probability; path-integral;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This is a brief review on Brownian functionals in one dimension and their various applications. After a brief description of Einstein's original derivation of the diffusion equation, this article provides a pedagogical introduction to the path integral methods leading to the derivation of the celebrated Feynman-Kac formula. The usefulness of this technique in calculating the statistical properties of Brownian functionals; is illustrated with several examples in physics and probability theory, with particular emphasis on applications in computer science. The statistical properties of 'first-passage Brownian functionals' and their applications are also discussed.
引用
收藏
页码:2076 / 2092
页数:17
相关论文
共 50 条
  • [1] Computer science in physics
    Young, AP
    [J]. INFORMATICS - 10 YEARS BACK, 10 YEARS AHEAD, 2001, 2000 : 356 - 368
  • [2] Computing with functionals - Computability theory or computer science?
    Normann, D
    [J]. BULLETIN OF SYMBOLIC LOGIC, 2006, 12 (01) : 43 - 59
  • [4] Computer science: Satisfied with physics
    Gomes, CP
    Selman, B
    [J]. SCIENCE, 2002, 297 (5582) : 784 - 785
  • [5] FUNCTIONALS OF BROWNIAN MEANDER AND BROWNIAN EXCURSION
    DURRETT, RT
    IGLEHART, DL
    [J]. ANNALS OF PROBABILITY, 1977, 5 (01): : 130 - 135
  • [6] Functionals of the Brownian Bridge
    Ortmann, Janosch
    [J]. SEMINAIRE DE PROBABILITES XLV, 2013, 2078 : 433 - 458
  • [7] BROWNIAN FUNCTIONALS AND APPLICATIONS
    KUO, HH
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1983, 1 (02) : 175 - 188
  • [8] Asymptotic studies of Brownian functionals
    Hu, YY
    Yor, M
    [J]. RANDOM WALKS, 1999, 9 : 187 - 217
  • [9] On a triplet of exponential Brownian functionals
    Alili, L
    Matsumoto, H
    Shiraishi, T
    [J]. SEMINAIRE DE PROBABILITES XXXV, 2001, 1755 : 396 - 415
  • [10] Some Brownian functionals and their laws
    Donati-Martin, C
    Yor, M
    [J]. ANNALS OF PROBABILITY, 1997, 25 (03): : 1011 - 1058