Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes

被引:24
|
作者
Gillette, Andrew [1 ]
Rand, Alexander [2 ]
Bajaj, Chandrajit [3 ]
机构
[1] Univ Arizona, Dept Math, 617 N Santa Rita Ave, Tucson, AZ 85721 USA
[2] CD Adapco, Austin, TX USA
[3] Univ Texas Austin, Inst Computat Engn & Sci, Dept Comp Sci, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Generalized Barycentric Coordinates; Polygonal Finite Element Methods; Finite Element Exterior Calculus; EXTERIOR CALCULUS; DIFFERENTIAL FORMS; ELLIPTIC PROBLEMS; CONVEX POLYGONS; WHITNEY FORMS; POLYTOPES; INTERPOLATION; SPACES;
D O I
10.1515/cmam-2016-0019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nedelec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties.
引用
收藏
页码:667 / 683
页数:17
相关论文
共 50 条
  • [1] Mixed finite element method on polygonal and polyhedral meshes
    Kuznetsov, Y
    Repin, S
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 615 - 622
  • [2] Recovered finite element methods on polygonal and polyhedral meshes
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    Pryer, Tristan
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (04): : 1309 - 1337
  • [3] New mixed finite element method on polygonal and polyhedral meshes
    Kuznetsov, Y
    Repin, S
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2003, 18 (03) : 261 - 278
  • [4] Construction of Arbitrary Order Finite Element Degree-of-Freedom Maps on Polygonal and Polyhedral Cell Meshes
    Scroggs, Matthew W.
    Dokken, Jorgen S.
    Richardson, Chris N.
    Wells, Garth N.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2022, 48 (02):
  • [5] A macro BDM H-div mixed finite element on polygonal and polyhedral meshes
    Xu, Xuejun
    Ye, Xiu
    Zhang, Shangyou
    [J]. APPLIED NUMERICAL MATHEMATICS, 2024, 206 : 283 - 297
  • [6] A family of mimetic finite difference methods on polygonal and polyhedral meshes
    Brezzi, F
    Lipnikov, K
    Simoncini, V
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (10): : 1533 - 1551
  • [7] Construction of polyhedral finite element meshes based upon marching cube algorithm
    Kim, Sangjun
    Sohn, Dongwoo
    Im, Seyoung
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2019, 128 : 98 - 112
  • [8] An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes
    Wang, Chunmei
    Wang, Junping
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 2314 - 2330
  • [9] ANISOTROPIC POLYGONAL AND POLYHEDRAL DISCRETIZATIONS IN FINITE ELEMENT ANALYSIS
    Weisser, Steffen
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (02): : 475 - 501
  • [10] New perspectives on polygonal and polyhedral finite element methods
    Manzini, Gianmarco
    Russo, Alessandro
    Sukumar, N.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08): : 1665 - 1699