A version of Kac's lemma on first return times for suspension flows

被引:3
|
作者
Varandas, Paulo [1 ,2 ]
机构
[1] Univ Fed Bahia, Dept Matemat, Ave Ademar de Barros S-N, BR-40170110 Salvador, BA, Brazil
[2] Univ Porto, CMUP, Porto Alegre, RS, Brazil
关键词
Suspension flows; Poincare recurrence; hitting times; Kac's lemma; RECURRENCE; ENTROPY;
D O I
10.1142/S0219493716600029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the mean return times to a given set for suspension flows. In the discrete time setting, this corresponds to the classical version of Kac's lemma [ 11] that the mean of the first return time to a set with respect to the normalized probability measure is one. In the case of suspension flows we provide formulas to compute the mean return time. Positive measure sets on cross sections are also considered. In particular, this varies linearly with continuous reparametrizations of the flow and takes into account the mean escaping time from the original set. Relation with entropy and returns to positive measure sets on cross sections is also considered.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] THE RATE OF RETURN REGULATED VERSION OF SHEPHARD LEMMA
    FARE, R
    LOGAN, J
    [J]. ECONOMICS LETTERS, 1983, 13 (04) : 297 - 302
  • [2] A version of Zabrodsky's Lemma
    Tai, JY
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (05) : 1573 - 1578
  • [3] Algorithms for the Laplace–Stieltjes Transforms of First Return Times for Stochastic Fluid Flows
    Nigel G. Bean
    Małgorzata M. O’Reilly
    Peter G. Taylor
    [J]. Methodology and Computing in Applied Probability, 2008, 10 : 381 - 408
  • [4] A multidimensional version of Turan's lemma
    Fontes-Merz, Natacha
    [J]. JOURNAL OF APPROXIMATION THEORY, 2006, 140 (01) : 27 - 30
  • [5] A constrained version of Sauer's Lemma
    Ratsaby, J
    [J]. MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 543 - 551
  • [6] A bilateral version of Mane's lemma
    Bousch, T
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 335 (06) : 533 - 536
  • [7] On a local version of Jack's lemma
    Nunokawa, Mamoru
    Sokol, Janusz
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (02): : 101 - 108
  • [8] An infinitary version of Sperner's Lemma
    Hohti, Aarno
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (03): : 503 - 514
  • [9] An Algorithmic Version of Zariski's Lemma
    Wiesnet, Franziskus
    [J]. CONNECTING WITH COMPUTABILITY, 2021, 12813 : 469 - 482
  • [10] Algorithms for the Laplace-Stieltjes transforms of first return times for stochastic fluid flows
    Bean, Nigel G.
    O'Reilly, Malgorzata M.
    Taylor, Peter G.
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2008, 10 (03) : 381 - 408