Asymptotic Behavior of Constrained Local Minimizers in Finite Elasticity

被引:1
|
作者
Mainini, Edoardo [1 ]
Ognibene, Roberto [2 ]
Percivale, Danilo [1 ]
机构
[1] Univ Genoa, Dipartimento Ingn Meccan Energet Gest & Trasporti, Via Opera Pia 15, I-16145 Genoa, Italy
[2] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
关键词
Calculus of variations; Linear elasticity; Finite elasticity; Traction problem; Gamma-convergence; Equilibrium equations; Constrained minimizers; NONLINEAR ELASTICITY; LINEAR ELASTICITY; EXISTENCE; LINEARIZATION; BIFURCATION; SYMMETRY; THEOREM; LIMIT;
D O I
10.1007/s10659-022-09946-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We provide an approximation result for the pure traction problem of linearized elasticity in terms of local minimizers of finite elasticity, under the constraint of vanishing average curl for admissible deformation maps. When suitable rotations are included in the constraint, the limit is shown to be the linear elastic equilibrium associated to rotated loads.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [1] Asymptotic Behavior of Constrained Local Minimizers in Finite Elasticity
    Edoardo Mainini
    Roberto Ognibene
    Danilo Percivale
    Journal of Elasticity, 2022, 152 : 1 - 27
  • [2] Weak Local Minimizers in Finite Elasticity
    Gianpietro Del Piero
    Raffaella Rizzoni
    Journal of Elasticity, 2008, 93 : 203 - 244
  • [3] Weak Local Minimizers in Finite Elasticity
    Del Piero, Gianpietro
    Rizzoni, Raffaella
    JOURNAL OF ELASTICITY, 2008, 93 (03) : 203 - 244
  • [4] On the Uniqueness of Energy Minimizers in Finite Elasticity
    Jeyabal Sivaloganathan
    Scott J. Spector
    Journal of Elasticity, 2018, 133 : 73 - 103
  • [5] On the Uniqueness of Energy Minimizers in Finite Elasticity
    Sivaloganathan, Jeyabal
    Spector, Scott J.
    JOURNAL OF ELASTICITY, 2018, 133 (01) : 73 - 103
  • [6] Asymptotic stability of local Helfrich minimizers
    Lengeler, Daniel
    INTERFACES AND FREE BOUNDARIES, 2018, 20 (04) : 533 - 550
  • [7] NECESSARY CONDITIONS AT THE BOUNDARY FOR MINIMIZERS IN FINITE ELASTICITY
    SIMPSON, HC
    SPECTOR, SJ
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 107 (02) : 105 - 125
  • [8] Necessary Conditions at the Boundary for Minimizers in Incompressible Finite Elasticity
    G. P. Mac Sithigh
    Journal of Elasticity, 2005, 81 : 217 - 269
  • [9] Necessary conditions at the boundary for minimizers in incompressible finite elasticity
    Mac Sithigh, GP
    JOURNAL OF ELASTICITY, 2005, 81 (03) : 217 - 269
  • [10] Asymptotic behavior of energy-bounded local minimizers of the Ginzburg-Landau functionals
    Baldo, Sisto
    Orlandi, Giandomenico
    Weitkamp, Sasha
    SINGULARITIES IN NONLINEAR EVOLUTION PHENOMENA AND APPLICATIONS PROCEEDINGS, 2009, 9 : 47 - 57