Heterogeneous artificial neural network for short term electrical load forecasting

被引:50
|
作者
Piras, A
Buchenel, B
Jaccard, Y
Germond, A
Imhof, K
机构
[1] Electric Power Systems Laboratory, Swiss Federal Institute of Technology, Lausanne
关键词
short term load forecast; heterogeneous neural networks; variables selection; neural gas; weighted fuzzy average;
D O I
10.1109/59.486124
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Short term electrical load forecasting is a topic of major interest for the planning of energy production and distribution. The use of artificial neural networks has been demonstrated as a valid alternative to classical statistical methods in term of accuracy of results. However a common architecture able to forecast the load in different geographical regions, showing different load shape and climate characteristics, is still missing. In this paper we discuss a heterogeneous neural network architecture composed of an unsupervised part, namely a neural gas, which is used to analyze the process in sub models finding local features in the data and suggesting regression variables, and a supervised one, a multilayer perceptron, which performs the approximation of the underlying function. The resulting outputs are then summed by a weighted fuzzy average, allowing a smooth transition between sub models. The effectiveness of the proposed architecture is demonstrated by two days ahead load forecasting of EOS power system sub areas, corresponding to five different geographical regions, and of its total electrical load.
引用
收藏
页码:397 / 402
页数:6
相关论文
共 50 条
  • [1] Short term electrical load forecasting with artificial neural networks
    Czernichow, T
    Piras, A
    Imhof, K
    Caire, P
    Jaccard, Y
    Dorizzi, B
    Germond, A
    [J]. ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 1996, 4 (02): : 85 - 99
  • [2] Artificial neural network based short term load forecasting
    Kowm, D.
    Kim, M.
    Hong, C.
    Cho, S.
    [J]. International Journal of Smart Home, 2014, 8 (03): : 145 - 150
  • [3] Short Term Load Forecasting Using Artificial Neural Network
    Singh, Saurabh
    Hussain, Shoeb
    Bazaz, Mohammad Abid
    [J]. 2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 159 - 163
  • [4] Application of Artificial Neural Network for Short Term Load Forecasting
    Amral, N.
    King, D.
    Ozveren, C. S.
    [J]. 2008 PROCEEDINGS OF THE 43RD INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE, VOLS 1-3, 2008, : 240 - 244
  • [5] Short term load forecasting using artificial neural network
    Banda, E.
    Folly, K. A.
    [J]. 2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, : 108 - 112
  • [6] Artificial neural network based short-term load forecasting
    Munkhjargal, S
    Manusov, VZ
    [J]. KORUS 2004, VOL 1, PROCEEDINGS, 2004, : 262 - 264
  • [7] Short-Term Load Forecasting Using Artificial Neural Network
    Buhari, Muhammad
    Adamu, Sanusi Sani
    [J]. INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 83 - 88
  • [8] SHORT-TERM LOAD FORECASTING USING AN ARTIFICIAL NEURAL NETWORK
    LEE, KY
    CHA, YT
    PARK, JH
    KURZYN, MS
    PARK, DC
    MOHAMMED, OA
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (01) : 124 - 132
  • [9] Study of Artificial Neural Network Based Short Term Load Forecasting
    Webberley, Ashton
    Gao, David Wenzhong
    [J]. 2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [10] Research on a genetic neural artificial network in short term load forecasting
    Wang Luchao
    Deng Yongping
    [J]. ICCSE'2006: Proceedings of the First International Conference on Computer Science & Education: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2006, : 823 - 825