COMPOSITIONS OF INVERTIBILITY PRESERVING MAPS FOR SOME MONOIDS AND THEIR APPLICATION TO CLIFFORD ALGEBRAS

被引:1
|
作者
Yamaguchi, Naoya [1 ]
Yamaguchi, Yuka [2 ]
机构
[1] Kyushu Univ, Ctr Coevolut Social Syst, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan
[2] Kyushu Univ, Grad Sch Math, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan
关键词
invertibility preserving map; involution; monoid; Clifford algebra;
D O I
10.2206/kyushujm.73.25
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For some monoids, we give a method of composing invertibility preserving maps associated to 'partial involutions'. Also, we define the notion of 'determinants for finite dimensional algebras over a field'. As examples, we give invertibility preserving maps for Clifford algebras into a field and determinants for Clifford algebras into a field, where we assume that the algebras are generated by less than or equal to five generators over the field. On the other hand, 'determinant formulas for Clifford algebras' are known. We understand these formulas as an expression that connects invertibility preserving maps for Clifford algebras and determinants for Clifford algebras. As a result, we have a better sense of determinant formulas. In addition, we show that there is not such a determinant formula for Clifford algebras generated by greater than five generators.
引用
收藏
页码:25 / 41
页数:17
相关论文
共 50 条