Exotic quantum holonomy and non-Hermitian degeneracies in the two-body Lieb-Liniger model

被引:2
|
作者
Tanaka, Atushi [1 ]
Yonezawa, Nobuhiro [2 ]
Cheon, Taksu [3 ]
机构
[1] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan
[2] Osaka City Univ Adv Math Inst OCAMI, Sumiyoshi Ku, Osaka 5588585, Japan
[3] Kochi Univ Technol, Phys Lab, Kochi 7828502, Japan
关键词
POTENTIAL-ENERGY SURFACES; GAS; INTERSECTION;
D O I
10.1088/1751-8113/46/31/315302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An interplay of an exotic quantum holonomy and exceptional points is examined in one-dimensional Bose systems. The eigenenergy anholonomy, in which a Hermitian adiabatic cycle induces nontrivial change in eigenenergies, can be interpreted as a manifestation of the eigenenergy's Riemann surface structure, where the branch points are identified as exceptional points, which are degeneracy points in the complexified parameter space. It is also shown that the exceptional points are the divergent points of the non-Abelian gauge connection for the gauge theoretical formulation of the eigenspace anholonomy. This helps us to evaluate anti-path-ordered exponentials of the gauge connection to obtain gauge covariant quantities.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Quantum holonomy in the Lieb-Liniger model
    Yonezawa, Nobuhiro
    Tanaka, Atushi
    Cheon, Taksu
    [J]. PHYSICAL REVIEW A, 2013, 87 (06)
  • [2] Classical and quantum metrology of the Lieb-Liniger model
    Baak, Jae-Gyun
    Fischer, Uwe R.
    [J]. PHYSICAL REVIEW A, 2022, 106 (06)
  • [3] Quantum phase transition in a multicomponent anyonic Lieb-Liniger model
    Santos, Raul A.
    Paraan, Francis N. C.
    Korepin, Vladimir E.
    [J]. PHYSICAL REVIEW B, 2012, 86 (04):
  • [4] The relevant excitations for the one-body function in the Lieb-Liniger model
    Panfil, Milosz
    Sant'Ana, Felipe Taha
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (07):
  • [5] Understanding many-body physics in one dimension from the Lieb-Liniger model
    Jiang Yu-Zhu
    Chen Yang-Yang
    Guan Xi-Wen
    [J]. CHINESE PHYSICS B, 2015, 24 (05)
  • [6] Three-body local correlation function in the Lieb-Liniger model: bosonization approach
    Cheianov, Vadim V.
    Smith, H.
    Zvonarev, M. B.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
  • [7] Quantum phase transitions mediated by clustered non-Hermitian degeneracies
    Znojil, Miloslav
    [J]. PHYSICAL REVIEW E, 2021, 103 (03)
  • [8] Random two-body dissipation induced non-Hermitian many-body localization
    Liu Jing-Hu
    Xu Zhi-Hao
    [J]. ACTA PHYSICA SINICA, 2024, 73 (07)
  • [9] Coulomb analogy for non-hermitian degeneracies near quantum phase transitions
    Cejnar, Pavel
    Heinze, Stefan
    Macek, Michal
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (10)
  • [10] Two-dimensional anisotropic non-Hermitian Lieb lattice
    Xie, L. C.
    Wu, H. C.
    Zhang, X. Z.
    Jin, L.
    Song, Z.
    [J]. PHYSICAL REVIEW B, 2021, 104 (12)