Dyad Ranking Using A Bilinear Plackett-Luce Model

被引:7
|
作者
Schaefer, Dirk [1 ]
Huellermeier, Eyke [2 ]
机构
[1] Univ Marburg, Marburg, Germany
[2] Univ Paderborn, Dept Comp Sci, D-33098 Paderborn, Germany
关键词
Label ranking; Plackett-Luce model; Meta-learning; ALGORITHMS;
D O I
10.1007/978-3-319-23525-7_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Label ranking is a specific type of preference learning problem, namely the problem of learning a model that maps instances to rankings over a finite set of predefined alternatives. These alternatives are identified by their name or label while not being characterized in terms of any properties or features that could be potentially useful for learning. In this paper, we consider a generalization of the label ranking problem that we call dyad ranking. In dyad ranking, not only the instances but also the alternatives are represented in terms of attributes. For learning in the setting of dyad ranking, we propose an extension of an existing label ranking method based on the Plackett-Luce model, a statistical model for rank data. Moreover, we present first experimental results confirming the usefulness of the additional information provided by the feature description of alternatives.
引用
收藏
页码:227 / 242
页数:16
相关论文
共 50 条
  • [1] Dyad ranking using Plackett-Luce models based on joint feature representations
    Schaefer, Dirk
    Huellermeier, Eyke
    [J]. MACHINE LEARNING, 2018, 107 (05) : 903 - 941
  • [2] A Note on Ranking in the Plackett-Luce Model for Multiple Comparisons
    Jing Luo
    Hong Qin
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 885 - 892
  • [3] A Note on Ranking in the Plackett-Luce Model for Multiple Comparisons
    Jing LUO
    Hong QIN
    [J]. Acta Mathematicae Applicatae Sinica, 2019, 35 (04) : 885 - 892
  • [4] A Note on Ranking in the Plackett-Luce Model for Multiple Comparisons
    Luo, Jing
    Qin, Hong
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (04): : 885 - 892
  • [5] Monocular Depth Estimation via Listwise Ranking using the Plackett-Luce Model
    Lienen, Julian
    Huellermeier, Eyke
    Ewerth, Ralph
    Nommensen, Nils
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14590 - 14599
  • [6] Bayesian analysis of ranking data with the Extended Plackett-Luce model
    Mollica, Cristina
    Tardella, Luca
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (01): : 175 - 194
  • [7] Inferring from an imprecise Plackett-Luce model: Application to label ranking
    Adam, Loic
    Van Camp, Arthur
    Destercke, Sebastien
    Quost, Benjamin
    [J]. FUZZY SETS AND SYSTEMS, 2024, 482
  • [8] The Plackett-Luce Ranking Model on Permutation-based Optimization Problems
    Ceberio, Josu
    Mendiburu, Alexander
    Lozano, Jose A.
    [J]. 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 494 - 501
  • [9] PAC Battling Bandits in the Plackett-Luce Model
    Saha, Aadirupa
    Gopalan, Aditya
    [J]. ALGORITHMIC LEARNING THEORY, VOL 98, 2019, 98
  • [10] On Bayesian inference for the Extended Plackett-Luce model
    Johnson, Stephen R.
    Henderson, Daniel A.
    Boys, Richard J.
    [J]. BAYESIAN ANALYSIS, 2022, 17 (02): : 465 - 490