Maximum Likelihood Estimation of Depth Maps Using Photometric Stereo

被引:6
|
作者
Harrison, Adam P. [1 ]
Joseph, Dileepan [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Photometric stereo; depth map; maximum likelihood estimation; nonlinear regression; finite difference methods; NOISE-REDUCTION; SHAPE; GRADIENT;
D O I
10.1109/TPAMI.2011.249
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Photometric stereo and depth-map estimation provide a way to construct a depth map from images of an object under one viewpoint but with varying illumination directions. While estimating surface normals using the Lambertian model of reflectance is well established, depth-map estimation is an ongoing field of research and dealing with image noise is an active topic. Using the zero-mean Gaussian model of image noise, this paper introduces a method for maximum likelihood depth-map estimation that accounts for the propagation of noise through all steps of the estimation process. Solving for maximum likelihood depth-map estimates involves an independent sequence of nonlinear regression estimates, one for each pixel, followed by a single large and sparse linear regression estimate. The linear system employs anisotropic weights, which arise naturally and differ in value to related work. The new depth-map estimation method remains efficient and fast, making it practical for realistic image sizes. Experiments using synthetic images demonstrate the method's ability to robustly estimate depth maps under the noise model. Practical benefits of the method on challenging imaging scenarios are illustrated by experiments using the Extended Yale Face Database B and an extensive data set of 500 reflected light microscopy image sequences.
引用
收藏
页码:1368 / 1380
页数:13
相关论文
共 50 条
  • [1] Dense stereo matching using kernel maximum likelihood estimation
    Jagmohan, A
    Singh, M
    Ahuja, N
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 28 - 31
  • [2] A depth recovery algorithm for using the maximum likelihood estimation
    Zhang, Hong
    Lei, Qiong
    [J]. 8TH INTERNATIONAL CONFERENCE ON INTERNET MULTIMEDIA COMPUTING AND SERVICE (ICIMCS2016), 2016, : 132 - 135
  • [3] Depth Estimation with Light Field and Photometric Stereo Data Using Energy Minimization
    Antensteiner, Doris
    Stolc, Svorad
    Huber-Moerk, Reinhold
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2016, 2017, 10125 : 175 - 183
  • [4] Bayesian and maximum likelihood estimation of genetic maps
    York, TL
    Durrett, RT
    Tanksley, S
    Nielsen, R
    [J]. GENETICS RESEARCH, 2005, 85 (02) : 159 - 168
  • [5] Maximum likelihood estimation in calibrating a stereo camera setup
    Muijtjens, AMM
    Roos, JMA
    Arts, T
    Hasman, A
    [J]. MEDICAL PHYSICS, 1999, 26 (02) : 310 - 318
  • [6] Maximum likelihood estimation in calibrating a stereo camera setup
    Dept. of Medical Informatics, University of Maastricht, P.O. Box 616, 6200 MD MAASTRICHT, Netherlands
    [J]. Med. Phys., 2 (310-318):
  • [7] ESTIMATION OF VELOCITY-DEPTH SPECTRA USING MAXIMUM LIKELIHOOD METHOD
    BAGGEROER, AB
    LEVERETTE, SJ
    [J]. GEOPHYSICS, 1976, 41 (02) : 339 - 340
  • [8] DETERMINING A DEPTH MAP USING A DUAL PHOTOMETRIC STEREO
    IKEUCHI, K
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1987, 6 (01): : 15 - 31
  • [9] Maximum likelihood estimation of depth field for trinocular images
    Neri, A.
    Carli, M.
    Battisti, F.
    [J]. ELECTRONICS LETTERS, 2013, 49 (06) : 394 - 396
  • [10] INCREASED DEPTH OF FIELD AND STEREO PAIRS OF FLUORESCENCE MICROGRAPHS VIA INVERSE FILTERING AND MAXIMUM-LIKELIHOOD-ESTIMATION
    HOLMES, TJ
    LIU, YH
    KHOSLA, D
    AGARD, DA
    [J]. JOURNAL OF MICROSCOPY, 1991, 164 : 217 - 237