North Atlantic Gateway: Test bed of deep-sea macroecological patterns

被引:27
|
作者
Joest, Anna B. [1 ,2 ]
Yasuhara, Moriaki [1 ,2 ]
Wei, Chih-Lin [3 ]
Okahashi, Hisayo [1 ,2 ]
Ostmann, Alexandra [4 ]
Arbizu, Pedro Martinez [4 ]
Mamo, Briony [1 ,2 ]
Svavarsson, Joerundur [5 ]
Brix, Saskia [6 ]
机构
[1] Univ Hong Kong, Swire Inst Marine Sci, Hong Kong, Peoples R China
[2] Univ Hong Kong, Sch Biol Sci, Hong Kong, Peoples R China
[3] Natl Taiwan Univ, Inst Oceanog, Taipei, Taiwan
[4] German Ctr Marine Biodivers Res DZMB, Senckenberg Res Inst, Wilhelmshaven, Germany
[5] Univ Iceland, Inst Biol, Reykjavik, Iceland
[6] German Ctr Marine Biodivers Res DZMB, Senckenberg Res Inst, Hamburg, Germany
关键词
bathymetric barrier; beta diversity; depth diversity gradient; latitudinal diversity gradient; meiofauna; Ostracoda; SPECIES-DIVERSITY; DEPTH DISTRIBUTION; NORDIC SEAS; OSTRACODA; PRODUCTIVITY; HYPOTHESIS; GRADIENTS; CRUSTACEA; MODELS; LIFE;
D O I
10.1111/jbi.13632
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim The deep waters around Iceland, known as the North Atlantic Gateway, constitute an ideal location to investigate deep-sea ecological hypotheses. We constructed a comprehensive deep-sea macroecological dataset of the North Atlantic Gateway region and investigated the controlling factors of large-scale, deep-sea species diversity patterns. Location Sub-polar North Atlantic Ocean. Time period Modern. Major taxa studied Ostracoda (Crustacea). Methods We investigated deep-sea biodiversity patterns and applied ecological modelling (multiple regression and model averaging) to test whether these patterns are governed by environmental factors such as temperature, surface primary productivity, and seasonality. Beta diversity analyses were applied to evaluate the effect of a geographical barrier (Greenland-Iceland-Faeroe Ridge) on deep-sea benthic faunal distributions. Results We constructed a deep-sea macroecological dataset with 32 stations, 5,676 specimens, and >122 species. We confirmed a linear latitudinal diversity gradient with higher diversity in the North Atlantic proper than in the Nordic Seas. We report a unimodal depth diversity gradient south of the ridge, but a linear diversity-decline with depth north of the ridge. The turnover component of beta diversity increased towards the ridge. Main conclusions We found both temperature and surface primary production are important for deep-sea biodiversity. For the first time, we report a significant diversity-temperature relationship in both macroecological (spatial; this study) and existing paleoecological (time-series) data for the same taxa. In addition to temperature and surface primary production, bathymetric features such as a shallow ridge acting as a barrier are an important factor for deep-sea biodiversity distribution. The low diversity of the Nordic Seas is likely due to a combination of low temperatures and bathymetric barriers. These results substantially expand our understanding of the well-known yet poorly understood Greenland-Iceland-Faeroe Ridge faunal transition with possible insight to its cause.
引用
收藏
页码:2056 / 2066
页数:11
相关论文
共 50 条