Delay-Dependent Stability Analysis for Linear System with Time-Varying Delay: a PAM Method

被引:2
|
作者
Zhao, Xia [1 ]
Song, Jin [1 ]
Tian, Engang [2 ]
Peng, Chen [2 ]
机构
[1] Nanjing Coll Informat Technol, Nanjing 210046, Peoples R China
[2] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210046, Jiangsu, Peoples R China
关键词
Delay Dependent; Piecewise Analysis Method (PAM); Lyapunov functional; Interval Time-Varying Delay; H-INFINITY CONTROL; ROBUST STABILITY; UNCERTAIN SYSTEMS; CRITERIA;
D O I
10.1109/CCDC.2009.5192366
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A piecewise analysis method (PAM) is proposed to investigate the stability of linear system with time-varying delay and uncertainties. Different from the existing methods in dealing with the time-varying delay, the whole variation interval of the delay is divided into two subintervals with equal length. Respecting for the delay belongs to different subintervals, new criteria on stability analysis of the time delay systems are obtained by checking the variation of the derivative of the Lyapunov functional in the two subintervals. Then, by using the convexity properties of matrix inequality and some other new analysis techniques, new criteria are obtained for the asymptotical stable of the time delay systems. The given numerical examples show that the derived criteria can lead to much less conservative results than those obtained based on the existing methods.
引用
收藏
页码:1422 / +
页数:2
相关论文
共 50 条
  • [1] Delay-dependent stability analysis of linear systems with time-varying delay
    Ariba, Yassine
    Gouaisbaut, Frederic
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 3739 - 3744
  • [2] Delay-dependent Stability Analysis of Linear System with Additive Time-Varying Delays
    Ramakrishnan, K.
    Ray, G.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, 2009, : 122 - 126
  • [3] Improved Delay-dependent Stability Criteria for Linear System with Interval Time-varying Delay
    Wang Jianan
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1325 - 1329
  • [4] New results for delay-dependent stability of linear systems with time-varying delay
    Han, QL
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2002, 33 (03) : 213 - 228
  • [5] Improved delay-dependent stability criteria for linear systems with time-varying delay
    Qian Wei
    Liu Juan
    Bao Anping
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 2, 2009, : 374 - +
  • [6] Further Results On Delay-dependent Stability and Robust Stability of Linear System with Interval Time-varying Delay
    Wang, Jian-An
    Yin, Zhi-Gang
    [J]. PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 1166 - 1171
  • [7] Delay-dependent conditions for finite time stability of linear time-varying systems with delay
    Chen, Menghua
    Sun, Jian
    [J]. ASIAN JOURNAL OF CONTROL, 2020, 22 (02) : 924 - 933
  • [8] An analysis method to delay-dependent stability in time-delay linear system
    Kim, Kyungsup
    Kim, Byung-yong
    [J]. PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON CONTROL AND APPLICATIONS, 2006, : 285 - +
  • [9] Delay-Dependent Stability for Neutral Systems with Time-Varying Delay
    Bai Lei
    Xiao Shen-Ping
    Zeng Hong-Bing
    [J]. 2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 540 - 543
  • [10] Delay-dependent stability for neural networks with time-varying delay
    Liu, Hailin
    Chen, Guohua
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 33 (01) : 171 - 177