Generic Existence of Solutions of Symmetric Optimization Problems

被引:2
|
作者
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 12期
关键词
complete metric space; generic element; lower semicontinuos function; uniformity; CONVEX-FUNCTIONS; FIXED-POINTS; POROSITY;
D O I
10.3390/sym12122004
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we study a class of symmetric optimization problems which is identified with a space of objective functions, equipped with an appropriate complete metric. Using the Baire category approach, we show the existence of a subset of the space of functions, which is a countable intersection of open and everywhere dense sets, such that for every objective function from this intersection the corresponding symmetric optimization problem possesses a solution.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条