Enhanced electrochemical behavior of Na0.66Li0.22Ti0.78O2/C layered P2-type composite anode material for Na-ion batteries

被引:9
|
作者
Nowak, Mikolaj [1 ]
Zajac, Wojciech [1 ]
Hanc, Emil [2 ]
Molenda, Janina [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Energy & Fuels, Dept Hydrogen Energy, Al A Mickiewicza 30, PL-30059 Krakow, Poland
[2] Polish Acad Sci, Mineral & Energy Econ Res Inst, PL-31261 Krakow, Poland
关键词
Na-ion batteries; Oxide anode materials; Titanium-based oxides; Electrical conductivity; GITT; Ketjen black; ANATASE TIO2; SODIUM; CATHODE; ELECTROLYTE; CONDUCTIVITY; PERFORMANCE; STORAGE;
D O I
10.1016/j.compositesb.2021.108729
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within this paper, we present a comprehensive characterization of Na0.66Li0.22Ti0.78O2 - inexpensive, zero-strain anode material for Na-ion batteries in terms of the sodium-ion transport mechanism and electrochemical performance. Na0.66Li0.22Ti0.78O2 was synthesized via a citrate assisted sol-gel method for the first time, which resulted in a four times higher specific surface area as compared to the conventional synthesis method. EIS and DC polarization experiments showed that electrical conductivity in Na0.66Li0.22Ti0.78O2 is mainly ionic with bulk conductivity of 1.54.10(-4) S cm(-1) at room temperature and enthalpy of Na-ion migration equal to 0.37 eV. Structural changes during intercalation/deintercalation were investigated using operando X-ray diffraction and revealed that lattice parameters monotonically evolve, and P2 structure is maintained during the whole range of sodium insertion/extraction. GITT technique revealed that the chemical diffusion coefficient of sodium changes within two orders of magnitude between 4.8.10(-12) cm(2) s(-1) and 2.5.10(-10) cm(2) s(-1), and such changes were correlated with evolution of occupancy of sodium sites, and contraction of the interlayer gap. Electrochemical tests in both half and full cells show excellent performance of Na0.66Li0.22Ti0.78O2 in a wide range of current loads. The supremacy of sol-gel method fabricated materials is especially visible under high currents (10C), where 60% of theoretical capacity is preserved, which is two times higher than in the materials obtained via a standard high-temperature solid-state reaction. Full cells with a Na0.72Li0.24Mn0.76O2 cathode provided 2.88 V mid-point voltage and a discharge capacity of 132 mAh g(-1). Such results prove that Na0.66Li0.22Ti0.78O2 anodes may find their applications in both large-scale energy storage systems and high-power output devices.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
    高健翔
    孙凯
    郭浩
    李正耀
    王建林
    马小柏
    白雪东
    陈东风
    Chinese Physics B, 2022, 31 (09) : 635 - 640
  • [2] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
    Gao, Jianxiang
    Sun, Kai
    Guo, Hao
    Li, Zhengyao
    Wang, Jianlin
    Ma, Xiaobai
    Bai, Xuedong
    Chen, Dongfeng
    CHINESE PHYSICS B, 2022, 31 (09)
  • [3] P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries
    Buchholz, Daniel
    Chagas, Luciana Gomes
    Winter, Martin
    Passerini, Stefano
    ELECTROCHIMICA ACTA, 2013, 110 : 208 - 213
  • [4] Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries
    Ma, Chuze
    Alvarado, Judith
    Xu, Jing
    Clement, Raphaele J.
    Kodur, Moses
    Tong, Wei
    Grey, Clare P.
    Meng, Ying Shirley
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (13) : 4835 - 4845
  • [5] Exfoliation of Layered Na-Ion Anode Material Na2Ti3O7 for Enhanced Capacity and Cyclability
    Tsiamtsouri, Maria A.
    Allan, Phoebe K.
    Pell, Andrew J.
    Stratford, Joshua M.
    Kim, Gunwoo
    Kerber, Rachel N.
    Magusin, Pieter C. M. M.
    Jefferson, David A.
    Grey, Clare P.
    CHEMISTRY OF MATERIALS, 2018, 30 (05) : 1505 - 1516
  • [6] Synthesis and electrochemical performance of SnO2-Fe2O3 composite as an anode material for Na-ion and Li-ion batteries
    Wu, Xuehang
    Wu, Wenwei
    Zhou, Yuan
    Huang, Xusheng
    Chen, Wen
    Wang, Qing
    POWDER TECHNOLOGY, 2015, 280 : 119 - 123
  • [7] Effect of the Calcination Duration on the Electrochemical Properties of Na2Ti3O7 as Anode Material for Na-Ion Batteries
    Piffet, Caroline
    Eshraghi, Nicolas
    Mottet, Gregory
    Hatert, Frederic
    Swiatowska, Jolanta
    Cloots, Rudi
    Boschini, Frederic
    Mahmoud, Abdelfattah
    BATTERIES-BASEL, 2023, 9 (10):
  • [8] Electrochemical performance of sol-gel-made Na2Ti3O7 anode material for Na-ion batteries
    Markéta Zukalová
    Barbora Pitňa Lásková
    Karel Mocek
    Arnošt Zukal
    Milan Bouša
    Ladislav Kavan
    Journal of Solid State Electrochemistry, 2018, 22 : 2545 - 2552
  • [9] Electrochemical performance of sol-gel-made Na2Ti3O7 anode material for Na-ion batteries
    Zukalova, Marketa
    Laskova, Barbora Pitna
    Mocek, Karel
    Zukal, Arnost
    Bousa, Milan
    Kavan, Ladislav
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (08) : 2545 - 2552
  • [10] P2-type layered structure Na1.0Li0.2Mn0.7Ti0.1O2 as a superb electrochemical performance cathode material for sodium-ion batteries
    To, Nguyen, V
    Nguyen, Ky, V
    Nguyen, Hieu S.
    Luong, Son T.
    Doan, Phat T.
    Nguyen, Thu Hoa T.
    Ngo, Quyen Q.
    Nguyen, Nghia, V
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 880