Spatio-Temporal Volume Data Aggregation for Crowdsensing in VDTN

被引:1
|
作者
Teranishi, Yuuichi [1 ]
Kimata, Takashi [1 ]
Kawai, Eiji [1 ]
Harai, Hiroaki [1 ]
机构
[1] Natl Inst Informat & Commun Technol, 4-2-1 Nukui Kitamachi, Koganei, Tokyo 1848795, Japan
关键词
vehicular delay-tolerant network (VDTN); crowdsensing; data aggregation; SECURITY; PRIVACY;
D O I
10.1109/COMPSAC48688.2020.0-191
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a spatio-temporal data aggregation protocol in Vehicular Delay Tolerant Network (VDTN), We focus on Asynchronous Vehicular Crowdsensing Service (AVCS) to collect volume sensor data (e.g., images captured by on-board cameras) from VDTN-enabled vehicles. In AVCS, it is critical to cope with the huge redundant traffic generated by a large number of vehicles. We propose a novel protocol to aggregate volume spatio-temporal sensor data in Hybrid DTN data collection architecture. By assigning spatio-temporal identifiers (STI) to the aggregation targets in AVCS and extending the message exchange protocol to treat STI in VDTN, the redundant traffic can be significantly improved. Simulation results using a real taxi trace dataset showed the effectiveness of the proposed data aggregation protocol. The coverage of the crowdsensing was improved around 20-35% with 80% , traffic reduction compared with the baseline aggregation protocol.
引用
收藏
页码:592 / 600
页数:9
相关论文
共 50 条
  • [1] IAM - Interpolation and Aggregation on the Move: Collaborative Crowdsensing for Spatio-temporal Phenomena
    Du, Yifan
    Sailhan, Francoise
    Issarny, Valerie
    [J]. PROCEEDINGS OF THE 17TH EAI INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES (MOBIQUITOUS 2020), 2021, : 337 - 346
  • [2] Privacy preservation for spatio-temporal data in Mobile Crowdsensing scenarios
    Montori, Federico
    Bedogni, Luca
    [J]. PERVASIVE AND MOBILE COMPUTING, 2023, 90
  • [3] A generic algorithmic framework for aggregation of spatio-temporal data
    Jeong, SH
    Fernandes, AAA
    Paton, NW
    Griffiths, T
    [J]. 16TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2004, : 245 - 254
  • [4] Historical spatio-temporal aggregation
    Tao, Y
    Papadias, D
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2005, 23 (01) : 61 - 102
  • [5] Building a Crowdsensing Platform Based on Spatio-Temporal Fencing
    Miyagawa, Nobuhito
    Tsuchimoto, Ryoga
    Suzaki, Shota
    Kaji, Katsuhiko
    [J]. MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES, 2022, 419 : 797 - 809
  • [6] Incentive Mechanisms for Spatio-temporal Tasks in Mobile Crowdsensing
    Xu, Jia
    Guan, Chengcheng
    Dai, Haipeng
    Yang, Dejun
    Xu, Lijie
    Kai, Jianyi
    [J]. 2019 IEEE 16TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2019), 2019, : 55 - 63
  • [7] Isolines: efficient spatio-temporal data aggregation in sensor networks
    Solis, Ignacio
    Obraczka, Katia
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2009, 9 (03): : 357 - 367
  • [8] Temporal aggregation and spatio-temporal traffic modeling
    Percoco, Marco
    [J]. JOURNAL OF TRANSPORT GEOGRAPHY, 2015, 46 : 244 - 247
  • [9] Using the MapReduce Approach for the Spatio-Temporal Data Analytics in Road Traffic Crowdsensing Application
    Armoogum, Sandhya
    Munchetty-Chendriah, Shevam
    [J]. COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2017, 2018, 252 : 405 - 415
  • [10] Spatio-temporal aggregation using sketches
    Tao, YF
    Kollios, G
    Considine, J
    Li, FF
    Papadias, D
    [J]. 20TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2004, : 214 - 225