Ties in Worst-Case Analysis of the Euclidean Algorithm
被引:0
|
作者:
Hopkins, Brian
论文数: 0引用数: 0
h-index: 0
机构:
St Peters Univ, 2641 John F Kennedy Blvd, Jersey City, NJ 07306 USASt Peters Univ, 2641 John F Kennedy Blvd, Jersey City, NJ 07306 USA
Hopkins, Brian
[1
]
Tangboonduangjit, Aram
论文数: 0引用数: 0
h-index: 0
机构:
Mahidol Univ Int Coll, 999 Phutthamonthon Sai 4 Rd, Phutthamonthon Dist 73170, Nakhon Pathom, ThailandSt Peters Univ, 2641 John F Kennedy Blvd, Jersey City, NJ 07306 USA
Tangboonduangjit, Aram
[2
]
机构:
[1] St Peters Univ, 2641 John F Kennedy Blvd, Jersey City, NJ 07306 USA
[2] Mahidol Univ Int Coll, 999 Phutthamonthon Sai 4 Rd, Phutthamonthon Dist 73170, Nakhon Pathom, Thailand
We determine all pairs of positive integers below a given bound that require the most steps in the Euclidean algorithm. Also, we find asymptotic probabilities for a unique maximum pair or an even number of them. Our primary tools are continuant polynomials and the Zeckendorf representation using Fibonacci numbers.