Higher dimensional vortex standing waves for nonlinear Schrodinger equations

被引:3
|
作者
Marzuola, Jeremy L. [1 ]
Taylor, Michael E. [1 ]
机构
[1] Univ N Carolina, Dept Math, CB 3250 Phillips Hall, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
35J61; vortices; symmetry; Nonlinear Schrodinger equation; standing waves; GLOBAL WELL-POSEDNESS; CONCENTRATION-COMPACTNESS PRINCIPLE; SEMILINEAR ELLIPTIC EQUATION; RADIAL DATA; HYPERBOLIC SPACE; GROUND-STATE; EXISTENCE; SCATTERING; CALCULUS; SOLITONS;
D O I
10.1080/03605302.2015.1127966
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study standing wave solutions to nonlinear Schrodinger equations, on a manifold with a rotational symmetry, which transform in a natural fashion under the group of rotations. We call these vortex solutions. They are higher dimensional versions of vortex standing waves that have been studied on the Euclidean plane. We focus on two types of vortex solutions, which we call spherical vortices and axial vortices.
引用
收藏
页码:398 / 446
页数:49
相关论文
共 50 条