Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian

被引:10
|
作者
Orlov, Yu N. [1 ]
Sakbaev, V. Zh [2 ]
Smolyanov, O. G. [3 ]
机构
[1] RAS, MV Keldysh Appl Math Inst, Moscow 117901, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Oblast, Russia
[3] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
finitely multiple approximation; Feynman formula; Chernoff theorem; linear quantization; harmonic oscillator; Wigner function; POSITION-DEPENDENT MASS; FORMULAS; PARTICLES; INTEGRALS;
D O I
10.1007/s11232-012-0090-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine the rate with which finitely multiple approximations in the Feynman formula converge to the exact expression for the equilibrium density operator of a harmonic oscillator in the linear tau-quantization. We obtain an explicit analytic expression for a finitely multiple approximation of the equilibrium density operator and the related Wigner function. We show that in the class of tau-quantizations, the equilibrium Wigner function of a harmonic oscillator is positive definite only in the case of the Weyl quantization.
引用
收藏
页码:987 / 1000
页数:14
相关论文
共 50 条