A remark on the uniqueness of the Dirichlet series with a Riemann-type function equation

被引:18
|
作者
Ki, Haseo [1 ,2 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
[2] Korea Inst Adv Study, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
The Selberg class; The extended Selberg class; Uniqueness of L-functions;
D O I
10.1016/j.aim.2012.07.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if for a nonzero complex number c the inverse images L-1(-1) (c) and L-2(-1) (c) of two functions in the extended Selberg class are the same, then L-1(s) and L-2(s) must be identical. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2484 / 2490
页数:7
相关论文
共 50 条
  • [1] A uniqueness theorem for Dirichlet series satisfying a Riemann type functional equation
    Li, Bao Qin
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4198 - 4211
  • [2] A Riemann-type theorem for a Riemann-type integral
    Volcic, Aljosa
    [J]. RICERCHE DI MATEMATICA, 2019, 68 (02) : 333 - 339
  • [3] A Riemann-type theorem for a Riemann-type integral
    Aljoša Volčič
    [J]. Ricerche di Matematica, 2019, 68 : 333 - 339
  • [4] A Riemann-Type Theorem for Segmentally Alternating Series
    Banakiewicz, Michal
    Hanson, Bruce
    Pierce, Pamela
    Prus-Wisniowski, Franciszek
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (05) : 1303 - 1314
  • [5] A REMARK ON DIRICHLET SERIES WITH FUNCTIONAL EQUATION
    WARLIMONT, R
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1967, 228 : 144 - +
  • [6] A Riemann-Type Theorem for Segmentally Alternating Series
    Michał Banakiewicz
    Bruce Hanson
    Pamela Pierce
    Franciszek Prus-Wiśniowski
    [J]. Bulletin of the Iranian Mathematical Society, 2018, 44 : 1303 - 1314
  • [7] The Cauchy problem for a generalized Riemann-type hydrodynamical equation
    Wei, Long
    Wang, Yang
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (04)
  • [8] DIRICHLET SERIES SATISFYING A RIEMANN TYPE FUNCTIONAL EQUATION AND SHARING A SET
    Li, Xiao-Min
    Wu, Cong-Cong
    Yi, Hong-Xun
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (04): : 915 - 933
  • [9] RIEMANN AND RIEMANN-TYPE INTEGRATION IN BANACH SPACES
    Ali, Sk Jaker
    Mondal, Pratikshan
    [J]. REAL ANALYSIS EXCHANGE, 2013, 39 (02) : 403 - 440
  • [10] Riemann-type functional equations: Dirichlet polynomial approximations and a weak Gram law
    Sourmelidis, Athanasios
    Steuding, Joern
    Suriajaya, Irma
    [J]. ACTA ARITHMETICA, 2022, 204 (02) : 97 - 114