Dynamics of Periodic Waves in a Neural Field Model

被引:0
|
作者
Bessonov, Nikolai [1 ]
Beuter, Anne [2 ,3 ]
Trofimchuk, Sergei [4 ]
Volpert, Vitaly [5 ,6 ,7 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] Bordeaux INP, Ave Fac, F-33400 Talence, France
[3] CorStim SAS, 700 Ave Pic St Loup, F-34090 Montpellier, France
[4] Univ Talca, Inst Matemat & Fis, Casilla 747, Talca, Chile
[5] Univ Lyon 1, Inst Camille Jordan, UMR 5208, CNRS, F-69622 Villeurbanne, France
[6] INRIA Lyon La Doua, INRIA Team Dracula, F-69603 Villeurbanne, France
[7] RUDN Univ, Peoples Friendship Univ Russia, 6 Miklukho Maklaya St, Moscow 117198, Russia
关键词
neural field model; integro-differential equation; waves; brain stimulation; SPATIALLY STRUCTURED ACTIVITY; COUPLED NEURONAL NETWORKS; LATERAL-INHIBITION; TRAVELING-WAVES; CONNECTOME; STROKE; STATE;
D O I
10.3390/math8071076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Periodic traveling waves are observed in various brain activities, including visual, motor, language, sleep, and so on. There are several neural field models describing periodic waves assuming nonlocal interaction, and possibly, inhibition, time delay or some other properties. In this work we study the influences of asymmetric connectivity functions and of time delay for symmetric connectivity functions on the emergence of periodic waves and their properties. Nonlinear wave dynamics are studied, including modulated and aperiodic waves. Multiplicity of waves for the same values of parameters is observed. External stimulation in order to restore wave propagation in a damaged tissue is discussed.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Nonlinear analysis of periodic waves in a neural field model
    Budzinskiy, S.
    Beuter, A.
    Volpert, V.
    CHAOS, 2020, 30 (08)
  • [2] Neural field model of binocular rivalry waves
    Bressloff, Paul C.
    Webber, Matthew A.
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2012, 32 (02) : 233 - 252
  • [3] Travelling waves in a neural field model with refractoriness
    Hil G. E. Meijer
    Stephen Coombes
    Journal of Mathematical Biology, 2014, 68 : 1249 - 1268
  • [4] Neural field model of binocular rivalry waves
    Paul C. Bressloff
    Matthew A. Webber
    Journal of Computational Neuroscience, 2012, 32 : 233 - 252
  • [5] Travelling waves in a neural field model with refractoriness
    Meijer, Hil G. E.
    Coombes, Stephen
    JOURNAL OF MATHEMATICAL BIOLOGY, 2014, 68 (05) : 1249 - 1268
  • [6] Spatiotemporal dynamics of periodic waves in SIR model with driving factors
    Zheng, Q. Q.
    Shen, J. W.
    Pandey, V
    Zhao, Y. M.
    Guan, L. N.
    NEW JOURNAL OF PHYSICS, 2023, 25 (06):
  • [7] DYNAMICS OF PERIODIC-WAVES IN A MODEL WITH QUADRATIC AND CUBIC NONLINEARITIES
    ZABOLOTSKII, AA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1995, 107 (04): : 1100 - 1121
  • [8] The monotonicity and critical periods of periodic waves of the φ6 field model
    Aiyong Chen
    Jibin Li
    Wentao Huang
    Nonlinear Dynamics, 2011, 63 : 205 - 215
  • [9] The monotonicity and critical periods of periodic waves of the φ 6 field model
    Chen, Aiyong
    Li, Jibin
    Huang, Wentao
    NONLINEAR DYNAMICS, 2011, 63 (1-2) : 205 - 215
  • [10] Analyzing Global Dynamics of a Neural Field Model
    Shigeru Kubota
    Kazuyuki Aihara
    Neural Processing Letters, 2005, 21 : 133 - 141