Deep Context Maps: Agent Trajectory Prediction Using Location-Specific Latent Maps

被引:11
|
作者
Gilitschenski, Igor [1 ]
Rosman, Guy [2 ]
Gupta, Arjun [3 ]
Karaman, Sertac [3 ]
Rus, Daniela [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Toyota Res Inst, Ann Arbor, MI 48105 USA
[3] MIT, Lab Informat & Decis Syst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Intelligent vehicles; prediction methods; MOTION PREDICTION; MODEL;
D O I
10.1109/LRA.2020.3004800
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we propose a novel approach for agent motion prediction in cluttered environments. One of the main challenges in predicting agent motion is accounting for location and context-specific information. Our main contribution is the concept of learning context maps to improve the prediction task. Context maps are a set of location-specific latent maps that are trained alongside the predictor. Thus, the proposed maps are capable of capturing location context beyond visual context cues (e.g. usual average speeds and typical trajectories) or predefined map primitives (such as lanes and stop lines). We pose context map learning as a multi-task training problem and describe our map model and its incorporation into a state-of-the-art trajectory predictor. In extensive experiments, it is shown that use of learned maps can significantly improve predictor accuracy. Furthermore, the performance can be additionally boosted by providing partial knowledge of map semantics.
引用
收藏
页码:5097 / 5104
页数:8
相关论文
共 50 条
  • [1] Deep Location-Specific Tracking
    Yang, Lingxiao
    Liu, Risheng
    Zhang, David
    Zhang, Lei
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1309 - 1317
  • [2] LOCATION-SPECIFIC PREDICTION OF VULNERABLE PLAQUE USING IVUS, VIRTUAL HISTOLOGY, AND SPATIAL CONTEXT
    Zhang, Ling
    Wahle, Andreas
    Chen, Zhi
    Lopez, John
    Kovarnik, Tomas
    Sonka, Milan
    [J]. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 1354 - 1358
  • [3] Using mobile agent for location-specific data retrieval in MANET
    Tei, K
    Yoshioka, N
    Fukazawa, Y
    Honiden, S
    [J]. INTELLIGENCE IN COMMUNICATION SYSTEMS, 2005, 190 : 157 - 168
  • [4] An Approach to Vehicle Trajectory Prediction Using Automatically Generated Traffic Maps
    Quehl, Jannik
    Hu, Haohao
    Wirges, Sascha
    Lauer, Martin
    [J]. 2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 544 - 549
  • [5] AMENet: Attentive Maps Encoder Network for trajectory prediction
    Cheng, Hao
    Liao, Wentong
    Yang, Michael Ying
    Rosenhahn, Bodo
    Sester, Monika
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 172 : 253 - 266
  • [6] Crime Level Prediction using Stacked Maps with Deep Convolutional Autoencoder
    Esquivel, N.
    Peralta, B.
    Nicolis, O.
    [J]. 2019 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON), 2019,
  • [7] Location management by movement prediction using mobility patterns and regional route maps
    Ghosh, RK
    Rayanchu, SK
    Mohanty, H
    [J]. DISTRIBUTED COMPUTING: IWDC 2003, 2003, 2918 : 153 - 162
  • [8] On Context Management Using Metro Maps
    Zhanikeev, Marat
    [J]. 2014 IEEE 7TH INTERNATIONAL CONFERENCE ON SERVICE-ORIENTED COMPUTING AND APPLICATIONS (SOCA), 2014, : 309 - 313
  • [9] Statistical and machine learning models for location-specific crop yield prediction using weather indices
    Ajith, S.
    Debnath, Manoj Kanti
    Karthik, R.
    [J]. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2024,
  • [10] Location-specific prediction of maximum and minimum temperature over the western Himalayas
    Dimri, A. P.
    Mohanty, U. C.
    [J]. METEOROLOGICAL APPLICATIONS, 2007, 14 (01) : 79 - 93