Simulation on the Photonic Bandgap of 1-D Plasma Photonic Crystals

被引:25
|
作者
Tan, Haiyun [1 ,2 ,3 ,4 ]
Jin, Chenggang [1 ,2 ,3 ,4 ]
Zhuge, Lanjian [5 ]
Wu, Xuemei [1 ,2 ,3 ,4 ]
机构
[1] Soochow Univ, Coll Phys Optoelect & Energy, Suzhou 215006, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[3] Soochow Univ, Key Lab Adv Opt Mfg Technol, Suzhou 215006, Peoples R China
[4] Soochow Univ, Educ Minist China, Key Lab Modern Opt Technol, Suzhou 215006, Peoples R China
[5] Soochow Univ, Anal & Testing Ctr, Suzhou 215123, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Electromagnetic (EM) surface waves; photonic bandgap; plasma density; plasma photonic crystals (PPCs); FINITE-ELEMENT-METHOD; PERIODIC PLASMA; ELECTROMAGNETIC-WAVE; FIBERS; PROPAGATION; DENSITY; ARRAYS;
D O I
10.1109/TPS.2018.2795613
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, the effect of plasma density on the photonic bandgap of 1-D plasma photonic crystals (PPCs) has been investigated numerically based on the finite-element method. In the region where frequency is below the cutoff frequency, the transverse electric (TE) mode bandgaps exist due to the surface modes, such as the bandgaps in metallic photonic crystals; above the cutoff frequency, the positive permittivity bandgaps for TE mode, such as the bandgaps in conventional photonic crystals, are a consequence of the periodic distribution of dielectric constant in plasma and background medium. The bandgaps of the all-PPCs are strongly dependent on the plasma density, and the bandgap that forms at conditions near the cutoff frequency may be mutated if the changes of the plasma density are sufficiently obvious.
引用
收藏
页码:539 / 544
页数:6
相关论文
共 50 条
  • [1] Simulation on the Defect Mode Properties of 1-D Plasma Photonic Crystals
    Yang, Tianbo
    Li, Qi
    Liu, Xingxing
    Liu, Fei
    Fu, Tao
    [J]. 2019 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSQRWC), 2019,
  • [2] 1-D photonic bandgap resonator antenna
    Serier, C
    Cheype, C
    Chantalat, R
    Thèvenot, M
    Monédière, T
    Reineix, A
    Jecko, B
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 29 (05) : 312 - 315
  • [3] Investigation of Angular Dependence on Photonic Bandgap for 1-D Photonic Crystal
    Nigam, Anjali
    Suthar, B.
    Bhargava, A.
    Vijay, Y. K.
    [J]. 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2017), 2018, 1953
  • [4] Nanofabrication of 1-D photonic bandgap structures along a photonic wire
    Zhang, JP
    Chu, DY
    Wu, SL
    Bi, WG
    Tiberio, RC
    Joseph, RM
    Taflove, A
    Tu, CW
    Ho, ST
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8 (04) : 491 - 493
  • [5] 1-D photonic crystals for photovoltaics
    Gondek, E.
    Karasinski, P.
    [J]. PHOTONICS LETTERS OF POLAND, 2012, 4 (02) : 75 - 77
  • [6] Bandgap tuning of silicon micromachined 1-D photonic crystals by thermal oxidation
    Barillaro, Giuseppe
    Merlo, Sabina
    Strambini, Lucanos Marsilio
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2008, 14 (04) : 1074 - 1081
  • [7] Novel 1-D Sandwich Photonic Bandgap Structure
    庞云波
    高葆新
    [J]. Tsinghua Science and Technology, 2004, (02) : 227 - 233
  • [8] Modeling of 1-D photonic bandgap microstrip structures
    Fesenko, V. I.
    Tkachenko, G. V.
    [J]. 2007 INTERNATIONAL WORKSHOP ON OPTOELECTRONIC PHYSICS AND TECHNOLOGY, 2007, : 11 - 12
  • [9] Optical Bistability of 1-D Photonic Crystals Containing of Nonlinear Plasma
    Rao, Si-Si
    Wan, Bao-Fei
    Zhang, Hai-Feng
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2021, 49 (09) : 2653 - 2660
  • [10] Comparative Analysis of Photonic Bandgap and Transmittance in 1D Photonic Crystals
    Mishra, Upendra Kumar
    Chandel, Vishal Singh
    Vibhu, Isht
    Singh, Prabal Pratap
    [J]. 2018 5TH IEEE UTTAR PRADESH SECTION INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (UPCON), 2018, : 845 - 849