Hausdorff Dimension of Metric Spaces and Lipschitz Maps onto Cubes

被引:7
|
作者
Keleti, Tamas [1 ]
Mathe, Andras [2 ]
Zindulka, Ondrej [3 ]
机构
[1] Eotvos Lorand Univ, Inst Math, H-1117 Budapest, Hungary
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[3] Czech Tech Univ, Fac Civil Engn, Dept Math, Prague 16000 6, Czech Republic
基金
英国工程与自然科学研究理事会; 匈牙利科学研究基金会;
关键词
MEASURE ZERO; SET;
D O I
10.1093/imrn/rns223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a compact metric space (or more generally an analytic subset of a complete separable metric space) of Hausdorff dimension bigger than k can always be mapped onto a k-dimensional cube by a Lipschitz map. We also show that this does not hold for arbitrary separable metric spaces. As an application, we essentially answer a question of Urbanski by showing that the transfinite Hausdorff dimension (introduced by him) of an analytic subset A of a complete separable metric space is left perepndiculardim(H)Aright perepndicular if dim(H)A is finite but not an integer, dimHA or dim(H)A-1 if dim(H)A is an integer and at least omega(0) if dim(H)A=infinity.
引用
收藏
页码:289 / 302
页数:14
相关论文
共 50 条