ViziQuer: A Tool to Explore and Query SPARQL Endpoints

被引:0
|
作者
Zviedris, Martins [1 ]
Barzdins, Guntis [1 ]
机构
[1] Latvian State Univ, Inst Matemat & Comp Sci, LV-1459 Riga, Latvia
关键词
SPARQL endpoint; Visualization; Query; Ontology;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The presented tool uses a novel approach to explore and query a SPARQL endpoint. The tool is simple to use as a user needs only to enter an address of a SPARQL endpoint of one's interest. The tool will extract and visualize graphically the data schema of the endpoint. The user will be able to overview the data schema and use it to construct a SPARQL query according to the data schema. The tool can be downloaded from http://viziquer.lumii.lv. There is also additional information and help on how to use it in practice.
引用
收藏
页码:441 / 445
页数:5
相关论文
共 50 条
  • [1] ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints
    Acosta, Maribel
    Vidal, Maria-Esther
    Lampo, Tomas
    Castillo, Julio
    Ruckhaus, Edna
    [J]. SEMANTIC WEB - ISWC 2011, PT I, 2011, 7031 : 18 - +
  • [2] ADERIS: An Adaptive Query Processor for Joining Federated SPARQL Endpoints
    Lynden, Steven
    Kojima, Isao
    Matono, Akiyoshi
    Tanimura, Yusuke
    [J]. ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2011, PT II, 2011, 7045 : 808 - 817
  • [3] SPARKLIS: An Expressive Query Builder for SPARQL Endpoints with Guidance in Natural Language
    Ferre, Sebastien
    [J]. SEMANTIC WEB, 2017, 8 (03) : 405 - 418
  • [4] LDViz: A Tool to Assist the Multidimensional Exploration of SPARQL Endpoints
    Menin, Aline
    Maillot, Pierre
    Faron, Catherine
    Corby, Olivier
    Freitas, Carla Dal Sasso
    Gandon, Fabien
    Winckler, Marco
    [J]. WEB INFORMATION SYSTEMS AND TECHNOLOGIES, WEBIST 2020, WEBIST 2021, 2023, 469 : 149 - 173
  • [5] Expressive and Scalable Query-Based Faceted Search over SPARQL Endpoints
    Ferre, Sebastien
    [J]. SEMANTIC WEB - ISWC 2014, PT II, 2014, 8797 : 438 - 453
  • [6] Proactive Plan-Based Continuous Query Processing over Diverse SPARQL Endpoints
    Chun, Sejin
    Seo, Seungmin
    Ro, Wonwoo
    Lee, Kyong-Ho
    [J]. 2015 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT), VOL 1, 2015, : 161 - 164
  • [7] Intelligent SPARQL Endpoints: Optimizing Execution Performance by Automatic Query Relaxation and Queue Scheduling
    Torre-Bastida, Ana I.
    Villar-Rodriguez, Esther
    Bilbao, Miren Nekane
    Del Ser, Javier
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2016, 2016, 10048 : 3 - 17
  • [8] A Hybrid Approach to Perform Efficient and Effective Query Execution Against Public SPARQL Endpoints
    Acosta, Maribel
    [J]. WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2015, : 469 - 473
  • [9] Authorization Proxy for SPARQL Endpoints
    Stojanov, Riste
    Jovanovik, Milos
    [J]. ICT INNOVATIONS 2017: DATA-DRIVEN INNOVATION, 2017, 778 : 205 - 218
  • [10] The SPARQL query graph model for query optimization
    Hartig, Olaf
    Heese, Ralf
    [J]. SEMANTIC WEB: RESEARCH AND APPLICATIONS, PROCEEDINGS, 2007, 4519 : 564 - +