A Random Field Computational Adaptive Optics Framework for Optical Coherence Microscopy

被引:0
|
作者
Boroomand, Ameneh [1 ]
Tan, Bingyao [1 ]
Shafiee, Mohammad Javad [1 ,2 ]
Bizheva, Kostadinka [1 ]
Wong, Alexander [1 ,2 ]
机构
[1] Univ Waterloo, Waterloo, ON, Canada
[2] Waterloo Artificial Intelligence Inst, Waterloo, ON, Canada
关键词
Computational adaptive optics; Optical coherence microscopy; Random field; INTERFEROMETRIC TOMOGRAPHY; DECONVOLUTION METHODS; RESOLUTION;
D O I
10.1007/978-3-030-27272-2_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel random field computational adaptive optics (R-CAO) framework is proposed to jointly correct for optical aberrations and speckle noise issues in optical coherence microscopy (OCM) and thus overcome the depth-of-field limitation in OCM imaging. The performance of the R-CAO approach is validated using OCM tomograms acquired from a standard USAF target and a phantom comprised of 1 mu m diameter microspheres embedded in agar gel. The R-CAO reconstructed OCM tomograms show reduced optical aberrations and speckle noise over the entire depth of imaging compared to the existing state-of-the-art computational adaptive optics algorithms such as the regularized maximum likelihood computational adaptive optics (RML-CAO) method. The reconstructed images using the proposed R-CAO framework show the usefulness of this method for the quality enhancement of OCM imaging over different imaging depths.
引用
收藏
页码:283 / 294
页数:12
相关论文
共 50 条
  • [1] GPU-based computational adaptive optics for volumetric optical coherence microscopy
    Tang, Han
    Mulligan, Jeffrey A.
    Untracht, Gavrielle R.
    Zhang, Xihao
    Adie, Steven G.
    [J]. HIGH-SPEED BIOMEDICAL IMAGING AND SPECTROSCOPY: TOWARD BIG DATA INSTRUMENTATION AND MANAGEMENT, 2016, 9720
  • [2] Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography
    Xu, Yang
    Liu, Yuan-Zhi
    Boppart, Stephen A.
    Carney, P. Scott
    [J]. APPLIED OPTICS, 2016, 55 (08) : 2034 - 2041
  • [3] Computational adaptive optics for polarization-sensitive optical coherence tomography
    Wang, Jianfeng
    Chaney, Eric J.
    Aksamitiene, Edita
    Marjanovic, Marina
    Boppart, Stephen A.
    [J]. OPTICS LETTERS, 2021, 46 (09) : 2071 - 2074
  • [4] Adaptive optics full-field optical coherence tomography
    Xiao, Peng
    Fink, Mathias
    Boccara, Albert Claude
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (12)
  • [5] Adaptive optical probe design for optical coherence tomography and microscopy using tunable optics
    Choi, Minseog
    Lee, Seungwan
    Chang, Jong-hyeon
    Lee, Eunsung
    Jung, Kyu-Dong
    Kim, Woonbae
    [J]. OPTICS EXPRESS, 2013, 21 (02): : 1567 - 1573
  • [6] Adaptive optics for optical microscopy [Invited]
    Zhang, Qinrong
    Hu, Qi
    Berlage, Caroline
    Kner, Peter
    Judkewitz, Benjamin
    Booth, Martin
    Ji, Na
    [J]. BIOMEDICAL OPTICS EXPRESS, 2023, 14 (04) : 1732 - 1756
  • [7] Computational adaptive optics for optical coherence tomography using multiple randomized subaperture correlations
    Hillmann, Dierck
    Pfaeffle, Clara
    Spahr, Hendrik
    Burhan, Sazan
    Kutzner, Lisa
    Hilge, Felix
    Huettmann, Gereon
    [J]. OPTICS LETTERS, 2019, 44 (15) : 3905 - 3908
  • [8] Adaptive optics optical coherence tomography in glaucoma
    Dong, Zachary M.
    Wollstein, Gadi
    Wang, Bo
    Schuman, Joel S.
    [J]. PROGRESS IN RETINAL AND EYE RESEARCH, 2017, 57 : 76 - 88
  • [9] Implementation of Adaptive Optics in Beam Scanning and Wide-field Optical Microscopy
    Girkin, J. M.
    [J]. MEMS ADAPTIVE OPTICS V, 2011, 7931
  • [10] Subaperture correlation based digital adaptive optics for full field optical coherence tomography
    Kumar, Abhishek
    Drexler, Wolfgang
    Leitgeb, Rainer A.
    [J]. OPTICS EXPRESS, 2013, 21 (09): : 10850 - 10866