Association of DCE-MRI texture features with molecular phenotypes and neoadjuvanttherapy response in breast cancer

被引:0
|
作者
Banerjee, N.
Maity, S.
Varadan, V.
Janevski, A.
Kamalakaran, S.
Sikov, W.
Abu-Khalaf, M.
Bossuyt, V.
Lannin, D.
Harris, L.
Cornfeld, D.
Dimitrova, N.
机构
[1] Philips Res North Amer, Philadelphia, PA USA
[2] Yale Comprehens Canc Ctr, New Haven, CT USA
[3] Brown Univ, Warren Alpert Med Sch, Providence, RI 02912 USA
[4] Yale New Haven Med Ctr, New Haven, CT USA
[5] Yale Breast Canc Program, New Haven, CT USA
[6] Seidman Canc Ctr, New Haven, CT USA
关键词
D O I
10.1158/0008-5472.SABCS12-P4-01-02
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
P4-01-02
引用
收藏
页数:1
相关论文
共 50 条
  • [1] DCE-MRI Texture Features for Early Prediction of Breast Cancer Therapy Response
    Thibault, Guillaume
    Tudorica, Alina
    Afzal, Aneela
    Chui, Stephen Y-C
    Naik, Arpana
    Troxell, Megan L.
    Kemmer, Kathleen A.
    Oh, Karen Y.
    Roy, Nicole
    Jafarian, Neda
    Holtorf, Megan L.
    Huang, Wei
    Song, Xubo
    [J]. TOMOGRAPHY, 2017, 3 (01) : 23 - 32
  • [2] Association of DW/DCE-MRI features with prognostic factors in breast cancer
    Shao, Guoliang
    Fan, Linyin
    Zhang, Juan
    Dai, Gang
    Xie, Tieming
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, 2017, 32 (01): : E118 - E125
  • [3] Spatiotemporal features of DCE-MRI for breast cancer diagnosis
    Banaie, Masood
    Soltanian-Zadeh, Hamid
    Saligheh-Rad, Hamid-Reza
    Gity, Masoumeh
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 155 : 153 - 164
  • [4] Molecular subtypes classification of breast cancer in DCE-MRI using deep features
    Hasan, Ali M.
    Al-Waely, Noor K. N.
    Aljobouri, Hadeel K.
    Jalab, Hamid A.
    Ibrahim, Rabha W.
    Meziane, Farid
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236
  • [5] Association between transcriptome and DCE-MRI phenotypes in invasive breast carcinoma
    Zhu, Yanhui
    Ming, Wenlong
    Liu, Yun
    Liu, Hongde
    Liu, Xiaoan
    [J]. ANNALS OF ONCOLOGY, 2022, 33 : S512 - S513
  • [6] DCE-MRI radiomics features for predicting breast cancer neoadjuvant therapy response
    Kontopodis, E.
    Manikis, G. C.
    Skepasianos, I.
    Tzagkarakis, K.
    Nikiforaki, K.
    Papadakis, G. Z.
    Maris, T. G.
    Papadaki, E.
    Karantanas, A.
    Marias, K.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2018, : 203 - 208
  • [7] Texture based segmentation of breast DCE-MRI
    Gong, Yang Can
    Brady, Michael
    [J]. DIGITAL MAMMOGRAPHY, PROCEEDINGS, 2008, 5116 : 689 - 695
  • [8] Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer
    Fan, Ming
    Li, Hui
    Wang, Shijian
    Zheng, Bin
    Zhang, Juan
    Li, Lihua
    [J]. PLOS ONE, 2017, 12 (02):
  • [9] Analysis of DCE-MRI Features in Tumor for Prediction of the Prognosis in Breast Cancer
    Liu, Bin
    Fan, Ming
    Zheng, Shuo
    Li, Lihua
    [J]. MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [10] Pathophysiological mapping of tumor habitats in the breast in DCE-MRI using molecular texture descriptor
    da Silva Neto, Otilio Paulo
    Lima Araujo, Jose Denes
    Caldas Oliveira, Ana Gabriela
    Cutrim, Mara
    Silva, Aristofanes Correa
    Paiva, Anselmo Cardoso
    Gattass, Marcelo
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 106 : 114 - 125