BERNSTEIN ESTIMATES: WEAKLY COUPLED SYSTEMS AND INTEGRAL EQUATIONS

被引:0
|
作者
Gomes, Diogo A. [1 ]
Terrone, Gabriele [1 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
关键词
Bernstein estimate; systems of fully non-linear elliptic equations; weak coupling; singular integral operators; fractional Laplacian; maximum principles; VISCOSITY SOLUTIONS; MAXIMUM-PRINCIPLES; MONOTONE SYSTEMS; STOPPING PROBLEM;
D O I
10.3934/cpaa.2012.11.861
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we extend the classical Bernstein estimates for systems of weakly coupled fully non-linear elliptic equations as well as scalar elliptic equations with non-local integral terms and singular kernels.
引用
收藏
页码:861 / 883
页数:23
相关论文
共 50 条
  • [1] Bernstein polynomials iterative method for weakly singular and fractional Fredholm integral equations
    Bica, Alexandru Mihai
    Satmari, Zoltan
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2024, 69 (03): : 695 - 712
  • [2] On coupled systems of Hammerstein integral equations
    de Sousa, Robert
    Minhos, Feliz
    [J]. BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [3] On coupled systems of Hammerstein integral equations
    Robert de Sousa
    Feliz Minhós
    [J]. Boundary Value Problems, 2019
  • [4] WEAKLY COUPLED SYSTEMS OF THE INFINITY LAPLACE EQUATIONS
    Mitake, H.
    Tran, H. V.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (03) : 1773 - 1795
  • [6] SPECTRAL METHOD BASED ON BERNSTEIN POLYNOMIALS FOR COUPLED SYSTEM OF FREDHOLM INTEGRAL EQUATIONS
    Alipour, Mohsen
    Baleanu, Dumitru
    Karimi, Kobra
    [J]. APPLIED AND COMPUTATIONAL MATHEMATICS, 2016, 15 (02) : 212 - 219
  • [7] Error Estimates of Projection Type Methods for Solving Weakly Singular Integral Equations
    Amosov A.A.
    Youssef Y.E.
    [J]. Journal of Mathematical Sciences, 2016, 216 (2) : 182 - 218
  • [8] Using of Bernstein spectral Galerkin method for solving of weakly singular Volterra–Fredholm integral equations
    Majid Erfanian
    Hamed Zeidabadi
    [J]. Mathematical Sciences, 2018, 12 : 103 - 109
  • [9] Optimal value functions for weakly coupled systems: a posteriori estimates
    Koltai, Peter
    Junge, Oliver
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (04): : 345 - 355
  • [10] Weakly Perturbed Integral Equations
    Boichuk O.A.
    Kozlova N.O.
    Feruk V.A.
    [J]. Journal of Mathematical Sciences, 2017, 223 (3) : 199 - 209