In Vivo Single-Molecule Detection of Nanoparticles for Multiphoton Fluorescence Correlation Spectroscopy to Quantify Cerebral Blood Flow

被引:20
|
作者
Fu, Xu [1 ]
Sompol, Pradoldej [2 ]
Brandon, Jason A. [3 ]
Norris, Christopher M. [2 ]
Wilkop, Thomas [4 ]
Johnson, Lance A. [2 ,3 ]
Richards, Christopher, I [1 ]
机构
[1] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA
[2] Univ Kentucky, Sanders Brown Ctr Aging, Lexington, KY 40536 USA
[3] Univ Kentucky, Dept Physiol, Lexington, KY 40536 USA
[4] Univ Kentucky, Light Microscopy Core, Lexington, KY 40536 USA
关键词
Multiphoton in vivo imaging; fluorescence correlation spectroscopy (FCS); cerebral blood flow (CBF); nanoparticles; CROSS-CORRELATION SPECTROSCOPY; MICROSCOPY; TOOL;
D O I
10.1021/acs.nanolett.0c02280
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present the application of multiphoton in vivo fluorescence correlation spectroscopy (FCS) of fluorescent nanoparticles for the measurement of cerebral blood flow with excellent spatial and temporal resolution. Through the detection of single nanoparticles within the complex vessel architecture of a live mouse, this new approach enables the quantification of nanoparticle dynamics occurring within the vasculature along with simultaneous measurements of blood flow properties in the brain. In addition to providing high resolution blood flow measurements, this approach enables real-time quantification of nanoparticle concentration, degradation, and transport. This method is capable of quantifying flow rates at each pixel with submicron resolution to enable monitoring of dynamic changes in flow rates in response to changes in the animal's physiological condition. Scanning the excitation beam using FCS provides pixel by pixel mapping of flow rates with subvessel resolution across capillaries 300 mu m deep in the brains of mice.
引用
收藏
页码:6135 / 6141
页数:7
相关论文
共 50 条
  • [1] Fluorescence correlation spectroscopy and single molecule detection
    Rigler, R
    BIOPHYSICAL JOURNAL, 1998, 74 (02) : A4 - A4
  • [2] 'True' single-molecule molecule observations by fluorescence correlation spectroscopy and two-color fluorescence cross-correlation spectroscopy
    Foeldes-Papp, Zeno
    EXPERIMENTAL AND MOLECULAR PATHOLOGY, 2007, 82 (02) : 147 - 155
  • [3] Commentary: Single-molecule fluorescence spectroscopy
    Patra, Digambara
    JOURNAL OF NANOPHOTONICS, 2012, 6
  • [4] Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes
    Schwille, P
    Korlach, J
    Webb, WW
    CYTOMETRY, 1999, 36 (03): : 176 - 182
  • [5] Single-Molecule Spectroscopy of Organic Dye Nanoparticles Explains Bulk Fluorescence
    Vivek Ranjan
    MRS Bulletin, 2005, 30 : 575 - 576
  • [7] Investigation on the setup of fluorescence correlation spectroscopy for single molecule detection
    Zhang, PD
    Ren, JC
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2005, 33 (07) : 899 - 903
  • [8] Developing a Single-Molecule Fluorescence Tool to Quantify DNA Damage
    Miller, Helen L.
    Wollman, Adam J. M.
    Dunn, Katherine E.
    Hirst, Adam M.
    Contera, Sonia Antoranz
    Johnson, Steve
    O'Connell, Deborah
    O'Toole, Peter
    Tyrrell, Andy M.
    Leake, Mark C.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 164A - 164A
  • [9] Single-molecule resonance energy transfer and fluorescence correlation spectroscopy of calmodulin in solution
    Slaughter, BD
    Allen, MW
    Unruh, JR
    Urbauer, RJB
    Johnson, CK
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (29): : 10388 - 10397
  • [10] Single-molecule analysis of restriction DNA fragments using fluorescence correlation spectroscopy
    Kinjo, M
    Nishimura, G
    Koyama, T
    Mets, U
    Rigler, R
    ANALYTICAL BIOCHEMISTRY, 1998, 260 (02) : 166 - 172