Order-Optimal Permutation Codes in the Generalized Cayley Metric

被引:0
|
作者
Yang, Siyi [1 ]
Schoeny, Clayton [1 ]
Dolecek, Lara [1 ]
机构
[1] Univ Calif Los Angeles, Elect Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
KENDALL TAU;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Permutation codes have recently garnered substantial research interest. In this paper, we study the permutation codes in the generalized Cayley metric. The generalized Cayley metric captures the number of generalized transposition errors in a permutation, and subsumes existing error types including transpositions and translocations without imposing restrictions on the lengths and positions of the translocated segments. Relying on the breakpoint analysis proposed by Chee and Vu, we construct a new class of permutation codes without interleaving. Our coding scheme, although it is non-constructive, has an order-optimal rate, and in certain circumstances, the rate is higher than that of existing codes based on interleaving.
引用
收藏
页码:234 / 238
页数:5
相关论文
共 50 条
  • [1] Theoretical Bounds and Constructions of Codes in the Generalized Cayley Metric
    Yang, Siyi
    Schoeny, Clayton
    Dolecek, Lara
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 4746 - 4763
  • [2] A Construction of Maximally Recoverable Codes With Order-Optimal Field Size
    Cai, Han
    Miao, Ying
    Schwartz, Moshe
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (01) : 204 - 212
  • [3] Breakpoint Analysis and Permutation Codes in Generalized Kendall tau and Cayley Metrics
    Chee, Yeow Meng
    Vu, Van Khu
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2959 - 2963
  • [4] On optimal permutation codes
    Goyal, VK
    Savari, SA
    Wang, W
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) : 2961 - 2971
  • [5] Order-Optimal Caching in Hierarchical Networks
    Zhang, Lin
    Wang, Zhao
    Xiao, Ming
    Wu, Gang
    2016 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2016,
  • [6] Perfect Permutation Codes with the Kendall's τ-Metric
    Buzaglo, Sarit
    Etzion, Tuvi
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2391 - 2395
  • [7] New Bounds for Permutation Codes in Ulam Metric
    Gologlu, Faruk
    Lember, Juri
    Riet, Ago-Erik
    Skachek, Vitaly
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1726 - 1730
  • [8] Nonexistence of perfect permutation codes under the ∞-metric
    Wang, Xiang
    Yin, Wenjuan
    Fu, Fang-Wei
    Applicable Algebra in Engineering, Communications and Computing, 2024, 35 (03): : 377 - 391
  • [9] Bounds on the Size of Permutation Codes With the Kendall τ-Metric
    Buzaglo, Sarit
    Etzion, Tuvi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (06) : 3241 - 3250
  • [10] Nonexistence of Perfect Permutation Codes in the Ulam Metric
    Kong, Justin
    Hagiwara, Manabu
    PROCEEDINGS OF 2016 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA 2016), 2016, : 691 - 695