Q-Learning-Based Voltage-Swing Tuning and Compensation for 2.5-D Memory-Logic Integration

被引:4
|
作者
Xu, Dongjun [1 ]
Yu, Ningmei [2 ]
Huang, Hantao [3 ]
Manoj, Sai P. D. [4 ]
Yu, Hao [5 ]
机构
[1] Xian Univ Technol, Xian 710048, Shaanxi, Peoples R China
[2] Xian Univ Technol, Dept Elect Engn, Xian, Shaanxi, Peoples R China
[3] Nanyang Technol Univ, Singapore, Singapore
[4] Tech Univ Wien, Inst Comp Tech, Vienna, Austria
[5] Southern Univ Sci & Technol, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
low power I/O; memory-logic integration; Q-learning; receiver compensation; Through-silicon interposer (TSI); voltage-swing tuning;
D O I
10.1109/MDAT.2017.2764075
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an efficient I/Q management with Q-learning-based transmitter swing adjustment and receiver compensation is developed for energy-efficient 2.5-D memory-logic integration. The proposed approach is able to achieve significant power reduction over other state-of-the-art methods. © 2013 IEEE.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 3 条
  • [1] A 2.5-D Memory-Logic Integration With Data-Pattern-Aware Memory Controller
    Xu, Dongjun
    Manoj, Sai P. D.
    Wang, Kanwen
    Yu, Hao
    Yu, Ningmei
    Yu, Mingbin
    IEEE DESIGN & TEST, 2015, 32 (04) : 49 - 58
  • [2] Reinforcement Learning based Self-adaptive Voltage-swing Adjustment of 2.5D I/Os for Many-core Microprocessor and Memory Communication
    Huang Hantao
    Manoj, Sai P. D.
    Xu, Dongjun
    Yu, Hao
    Hao, Zhigang
    2014 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2014, : 224 - 229
  • [3] A Q-Learning Based Self-Adaptive I/O Communication for 2.5D Integrated Many-Core Microprocessor and Memory
    Manoj, Sai
    Yu, Hao
    Huang, Hantao
    Xu, Dongjun
    IEEE TRANSACTIONS ON COMPUTERS, 2016, 65 (04) : 1185 - 1196