Visual Enhancement Using Sparsity-Based Image Decomposition for Low Backlight Displays

被引:0
|
作者
Shen, Chih-Tsung [1 ]
Lu, Zongqing [2 ]
Hung, Yi-Ping [1 ]
Pei, Soo-Chang [1 ,3 ]
机构
[1] Natl Taiwan Univ, Grad Inst Networking & Multimedia, Taipei, Taiwan
[2] Tsinghua Univ, Grad Sch Shenzhen, Shenzhen, Guangdong, Peoples R China
[3] Natl Taiwan Univ, Dept Elect Engn, Taipei, Taiwan
来源
2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2016年
关键词
ALGORITHM; RETINEX;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a power-constrained image enhancement system to maintain human visual perception when the LCD or LED display is under low backlight. Adopting the low backlight mode can save the electricity and lengthen the battery using time. First, we deduce the relationship between the image and the backlight for maintaining the same visual perceptual quality. Then, we propose a sparsity-based image decomposition to separate the intensity image into base layer and detail layer. Afterwards, we refer to the image-backlight relationship to compensate the base layer, while we also adopt texture-aware boosting to enhance the detail layer. Experimental simulated results show that our system outperforms than the compared systems.
引用
收藏
页码:2563 / 2566
页数:4
相关论文
共 50 条
  • [1] Visual Enhancement Using Constrained L0 Gradient Image Decomposition for Low Backlight Displays
    Pei, Soo-Chang
    Shen, Chih-Tsung
    Lee, Tzu-Yen
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (12) : 813 - 816
  • [2] JOINT SPARSITY-BASED ROBUST VISUAL TRACKING
    Bozorgtabar, Behzad
    Goecke, Roland
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4927 - 4931
  • [3] Multilayer Sparsity-Based Tensor Decomposition for Low-Rank Tensor Completion
    Xue, Jize
    Zhao, Yongqiang
    Huang, Shaoguang
    Liao, Wenzhi
    Chan, Jonathan Cheung-Wai
    Kong, Seong G.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6916 - 6930
  • [4] Image deblocking via shape-adaptive low-rank prior and sparsity-based detail enhancement
    Hu, Jing
    Zhou, Xin
    Ren, Chao
    Li, Xinglong
    He, Xiaohai
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 86
  • [5] SPARSITY-BASED PET IMAGE RECONSTRUCTION USING MRI LEARNED DICTIONARIES
    Tang, Jing
    Wang, Yanhua
    Yao, Rutao
    Ying, Leslie
    2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 1087 - 1090
  • [6] Backlight Scaled Contrast Enhancement for Liquid Crystal Displays Using Image Key-Based Compression
    Wang, Xiaoke
    Jung, Cheolkon
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [7] Sparsity-based Image Reconstruction Techniques for ISAR Imaging
    Raj, Raghu G.
    Lipps, Ronald
    Bottoms, A. Maitland
    2014 IEEE RADAR CONFERENCE, 2014, : 974 - 979
  • [8] A Universal Variational Framework for Sparsity-Based Image Inpainting
    Li, Fang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (10) : 4242 - 4254
  • [9] Sparsity-based classification using texture and depth
    Kounalakis, Tsampikos
    Boulgouris, Nikolaos V.
    2013 18TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2013,
  • [10] Image Enhancement for Backlight-Scaled TFT-LCD Displays
    Tsai, Pei-Shan
    Liang, Chia-Kai
    Huang, Tai-Hsiang
    Chen, Homer H.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2009, 19 (04) : 574 - 583