The Curious Case of Machine Learning in Malware Detection

被引:4
|
作者
Saad, Sherif [1 ]
Briguglio, William [1 ]
Elmiligi, Haytham [2 ]
机构
[1] Windsor Univ, Sch Comp Sci, Windsor, ON, Canada
[2] Thompson Rivers Univ, Comp Sci Dept, Kamloops, BC, Canada
关键词
Malware; Machine Learning; Behaviour Analysis; Adversarial Malware; Online Training; Detector Interpretation;
D O I
10.5220/0007470705280535
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we argue that detecting malware attacks in the wild is a unique challenge for machine learning techniques. Given the current trend in malware development and the increase of unconventional malware attacks, we expect that dynamic malware analysis is the future for antimalware detection and prevention systems. A comprehensive review of machine learning for malware detection is presented. Then, we discuss how malware detection in the wild present unique challenges for the current state-of-the-art machine learning techniques. We defined three critical problems that limit the success of malware detectors powered by machine learning in the wild. Next, we discuss possible solutions to these challenges and present the requirements of next-generation malware detection. Finally, we outline potential research directions in machine learning for malware detection.
引用
收藏
页码:528 / 535
页数:8
相关论文
共 50 条
  • [1] Application of Machine Learning in Malware Detection
    Van Quynh, Trinh
    Hien, Vu Thanh
    Nguyen, Vu Thanh
    Bao, Huynh Quoc
    [J]. FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022, 2022, 1688 : 362 - 374
  • [2] IoT Malware Detection with Machine Learning
    Buttyan, Levente
    Ferenc, Rudolf
    [J]. ERCIM NEWS, 2022, (129): : 17 - 19
  • [3] Applications of Machine Learning in Malware Detection
    Vaduva, Jan-Alexandru
    Pasca, Vlad-Raul
    Florea, Iulia-Maria
    Rughinis, Razvan
    [J]. NEW TECHNOLOGIES AND REDESIGNING LEARNING SPACES, VOL II, 2019, : 286 - 293
  • [4] Malware Detection Using Machine Learning
    Kumar, Ajay
    Abhishek, Kumar
    Shah, Kunjal
    Patel, Divy
    Jain, Yash
    Chheda, Harsh
    Nerurka, Pranav
    [J]. KNOWLEDGE GRAPHS AND SEMANTIC WEB, KGSWC 2020, 2020, 1232 : 61 - 71
  • [5] An Android Malware Detection Leveraging Machine Learning
    Shatnawi, Ahmed S.
    Jaradat, Aya
    Yaseen, Tuqa Bani
    Taqieddin, Eyad
    Al-Ayyoub, Mahmoud
    Mustafa, Dheya
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [6] Evaluation of Machine Learning Algorithms for Malware Detection
    Akhtar, Muhammad Shoaib
    Feng, Tao
    [J]. SENSORS, 2023, 23 (02)
  • [7] Analysis of machine learning models for malware detection
    Rahul
    Kedia, Priyansh
    Sarangi, Subrat
    Monika
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (02): : 395 - 407
  • [8] ANALYSIS OF MACHINE LEARNING METHODS ON MALWARE DETECTION
    Aydogan, Emre
    Sen, Sevil
    [J]. 2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 2066 - 2069
  • [9] Building a Machine Learning Classifier for Malware Detection
    Markel, Zane
    Bilzor, Michael
    [J]. 2014 SECOND WORKSHOP ON ANTI-MALWARE TESTING RESEARCH (WATER), 2014, : 20 - 23
  • [10] Android Malware Detection Based on Machine Learning
    Wang, Qing-Fei
    Fang, Xiang
    [J]. 2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), 2018, : 434 - 436