A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics

被引:162
|
作者
Bannister, R. N. [1 ]
机构
[1] Univ Reading, Data Assimilat Res Ctr, Reading RG6 6BB, Berks, England
基金
英国自然环境研究理事会;
关键词
balance; control variable transforms; flow dependency; multivariate;
D O I
10.1002/qj.340
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This article reviews a range of leading methods to model the background error covariance matrix (the B-matrix) in modern variational data assimilation systems. Owing partly to its very large rank, the B-matrix is impossible to use in an explicit fashion in an operational setting and so methods have been sought to model its important properties in a practical way. Because the B-matrix is such an important component of a data assimilation system, a large effort has been made in recent years to improve its formulation. Operational variational assimilation systems use a form of control variable transform to model B. This transform relates variables that exist in the assimilation's control space' to variables in the forecast model's physical space. The mathematical basis on which the control variable transform allows the B-matrix to be modelled is reviewed from first principles. and examples of existing transforms are brought together from the literature. The method allows a large rank matrix to be represented by a relatively small number of parameters. and it is shown how information that is not provided explicitly is filled in. Methods use dynamical properties of the atmosphere (e.g. balance relationships) and make assumptions about the way that background errors are spatially correlated (e.g. homogeneity and isotropy in the horizontal). It is also common to assume that the B-marix is static. The way that these, and other, assumptions are built into systems is shown. The article gives an example of how a current method performs.. An important part of this article is a discussion Of some new ideas that have been proposed to improve the method. Examples include how a more appropriate use of balance relations can tie made, how errors in the moist variables can be treated and how assumptions of homogeneity/isotropy and the otherwise static property of the B-matrix can be relaxed. Key developments in the application of dynamics, wavelets., recursive filters and flow-dependent methods are reviewed. The article ends with a round Lip of the methods and a discussion Of future challenges that the field will need to address. Copyright (C) 2008 Royal Meteorological Society
引用
收藏
页码:1971 / 1996
页数:26
相关论文
共 50 条