On Baseline Conditions for Zero-Inflated Longitudinal Count Data

被引:2
|
作者
Maruotti, Antonello [1 ,2 ,3 ]
Raponi, Valentina [4 ]
机构
[1] Univ Roma Tre, Dipartimento Ist Pubbl Econ & Soc, I-00145 Rome, Italy
[2] Univ Southampton, Southampton Stat Sci Res Inst, Southampton SO9 5NH, Hants, England
[3] Univ Southampton, Sch Math, Southampton SO9 5NH, Hants, England
[4] Univ Roma La Sapienza, Dipartimento Sci Stat, I-00185 Rome, Italy
关键词
Baseline conditions; Hurdle model; Longitudinal count data; Zero-inflation; INITIAL CONDITIONS PROBLEM; MODELS; REGRESSION;
D O I
10.1080/03610918.2012.714032
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a mixed-effect hurdle model for zero-inflated longitudinal count data, where a baseline variable is included in the model specification. Association between the count data process and the endogenous baseline variable is modeled through a latent structure, assumed to be dependent across equations. We show how model parameters can be estimated in a finite mixture context, allowing for overdispersion, multivariate association and endogeneity of the baseline variable. The model behavior is investigated through a large-scale simulation experiment. An empirical example on health care utilization data is provided.
引用
收藏
页码:743 / 760
页数:18
相关论文
共 50 条
  • [1] Semiparametric analysis of longitudinal zero-inflated count data
    Feng, Jiarui
    Zhu, Zhongyi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (01) : 61 - 72
  • [2] Hurdle Model for Longitudinal Zero-Inflated Count Data Analysis
    Jin, Iktae
    Lee, Keunbaik
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2014, 27 (06) : 923 - 932
  • [3] Conditional Quantile Functions for Zero-Inflated Longitudinal Count Data
    Lamarche, Carlos
    Shi, Xuan
    Young, Derek S.
    [J]. ECONOMETRICS AND STATISTICS, 2024, 31 : 49 - 65
  • [4] Bayesian semiparametric zero-inflated Poisson model for longitudinal count data
    Dagne, Getachew A.
    [J]. MATHEMATICAL BIOSCIENCES, 2010, 224 (02) : 126 - 130
  • [5] A joint modeling of longitudinal zero-inflated count data and time to event data
    Kim, Donguk
    Chun, Jihun
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1459 - 1473
  • [6] Mediation analysis for count and zero-inflated count data
    Cheng, Jing
    Cheng, Nancy F.
    Guo, Zijian
    Gregorich, Steven
    Ismail, Amid I.
    Gansky, Stuart A.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (09) : 2756 - 2774
  • [7] The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression.
    Loeys, Tom
    Moerkerke, Beatrijs
    De Smet, Olivia
    Buysse, Ann
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (01): : 163 - 180
  • [8] Semiparametric analysis of zero-inflated count data
    Lam, K. F.
    Xue, Hongqi
    Cheung, Yin Bun
    [J]. BIOMETRICS, 2006, 62 (04) : 996 - 1003
  • [9] Modelling correlated zero-inflated count data
    Dobbie, MJ
    Welsh, AH
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2001, 43 (04) : 431 - 444
  • [10] Statistical models for longitudinal zero-inflated count data: application to seizure attacks
    Mekonnen, Fenta Haile
    Lakew, Workie Demeke
    Tesfaye, Zike Dereje
    Swain, Prafulla Kumar
    [J]. AFRICAN HEALTH SCIENCES, 2019, 19 (03) : 2555 - 2564