Robust Neural Network for Novelty Detection on Data Streams

被引:0
|
作者
Rusiecki, Andrzej [1 ]
机构
[1] Wroclaw Univ Technol, PL-50370 Wroclaw, Poland
关键词
LEARNING ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the on-line data processing it is important to detect a novelty as soon as it appears, because it may be a consequence of gross errors or sudden change in the analysed system. In this paper we present a framework of novelty detection, based on the robust neural network. To detect novel patterns we compare responses of two autoregressive neural networks. One of them is trained with a robust learning algorithm designed to remove the influence of outliers, while the other uses simple training, based on the least squares error criterion. We present also a simple and easy to use approach that adapts this technique to data streams. Experiments conducted on data containing novelty and outliers have shown promising performance of the new method, applied to analyse temporal sequences.
引用
收藏
页码:178 / 186
页数:9
相关论文
共 50 条
  • [1] Concept drift robust adaptive novelty detection for data streams
    Cejnek, Matous
    Bukovsky, Ivo
    [J]. NEUROCOMPUTING, 2018, 309 : 46 - 53
  • [2] Novelty detection in data streams
    Faria, Elaine R.
    Goncalves, Isabel J. C. R.
    de Carvalho, Andre C. P. L. F.
    Gama, Joao
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2016, 45 (02) : 235 - 269
  • [3] Novelty detection in data streams
    Elaine R. Faria
    Isabel J. C. R. Gonçalves
    André C. P. L. F. de Carvalho
    João Gama
    [J]. Artificial Intelligence Review, 2016, 45 : 235 - 269
  • [4] Novelty detection with application to data streams
    Spinosa, Eduardo J.
    de Carvalho, Andre Ponce de Leon F.
    Gama, Joao
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 405 - 422
  • [5] Possibilistic Approach For Novelty Detection In Data Streams
    da Silva, Tiago Pinho
    Camargo, Heloisa de Arruda
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [6] Ensemble Clustering for Novelty Detection in Data Streams
    Garcia, Kemilly Dearo
    de Faria, Elaine Ribeiro
    de Sa, Claudio Rebelo
    Mendes-Moreira, Joao
    Aggarwal, Charu C.
    de Carvalho, Andre C. P. L. F.
    Kok, Joost N.
    [J]. DISCOVERY SCIENCE (DS 2019), 2019, 11828 : 460 - 470
  • [7] Neural network classification and novelty detection
    Augusteijn, MF
    Folkert, BA
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (14) : 2891 - 2902
  • [8] Novelty Detection and Online Learning for Chunk Data Streams
    Wang, Yi
    Ding, Yi
    He, Xiangjian
    Fan, Xin
    Lin, Chi
    Li, Fengqi
    Wang, Tianzhu
    Luo, Zhongxuan
    Luo, Jiebo
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (07) : 2400 - 2412
  • [9] Evaluation of Multiclass Novelty Detection Algorithms for Data Streams
    de Faria, Elaine Ribeiro
    Goncalves, Isabel Ribeiro
    Gama, Joao
    de Leon Ferreira Carvalho, Andre Carlos Ponce
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (11) : 2961 - 2973
  • [10] A neural data structure for novelty detection
    Dasgupta, Sanjoy
    Sheehan, Timothy C.
    Stevens, Charles F.
    Navlakha, Saket
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (51) : 13093 - 13098