Total forces in the diffusion Monte Carlo method with nonlocal pseudopotentials

被引:20
|
作者
Badinski, A. [1 ]
Needs, R. J. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Condensed Matter Theory Grp, Cambridge CB3 0HE, England
来源
PHYSICAL REVIEW B | 2008年 / 78卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevB.78.035134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report exact expressions for atomic forces in the diffusion Monte Carlo (DMC) method when using nonlocal pseudopotentials. We present approximate schemes for estimating these expressions in both mixed and pure DMC calculations, including the pseudopotential Pulay term and the Pulay nodal term. Harmonic vibrational frequencies and equilibrium bond lengths are derived from the DMC forces and compared with those obtained from DMC potential-energy curves. Results for four small molecules show that the equilibrium bond lengths obtained from our best force and energy calculations differ by less than 0.002 angstrom.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Total forces in the diffusion Monte Carlo method with nonlocal pseudopotentials (vol 78, art no 035134, 2008)
    Badinski, A.
    Needs, R. J.
    [J]. PHYSICAL REVIEW B, 2008, 78 (07):
  • [2] NONLOCAL PSEUDOPOTENTIALS AND DIFFUSION MONTE-CARLO
    MITAS, L
    SHIRLEY, EL
    CEPERLEY, DM
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (05): : 3467 - 3475
  • [3] Accurate forces in quantum Monte Carlo calculations with nonlocal pseudopotentials
    Badinski, A.
    Needs, R. J.
    [J]. PHYSICAL REVIEW E, 2007, 76 (03):
  • [4] Nonlocal pseudopotentials and time-step errors in diffusion Monte Carlo
    Anderson, Tyler A.
    Umrigar, C. J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (21):
  • [5] SPARSE MONTE CARLO METHOD FOR NONLOCAL DIFFUSION PROBLEMS
    Kaliuzhnyi-Verbovetskyi, Dmitry
    Medvedev, Georgi S.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (06) : 3001 - 3028
  • [6] Nonlocal pseudopotentials and time-step errors in diffusion Monte Carlo (vol 154, 214110, 2021)
    Anderson, Tyler A.
    Umrigar, C. J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (07):
  • [7] Size-consistent variational approaches to nonlocal pseudopotentials: Standard and lattice regularized diffusion Monte Carlo methods revisited
    Casula, Michele
    Moroni, Saverio
    Sorella, Sandro
    Filippi, Claudia
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15):
  • [8] Machine Learning Diffusion Monte Carlo Forces
    Huang, Cancan
    Rubenstein, Brenda M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (01): : 339 - 355
  • [9] GaN bandgap bias caused by semi-core treatment in pseudopotentials analyzed by the diffusion Monte Carlo method
    Nikaido, Yutaka
    Ichibha, Tom
    Nakano, Kousuke
    Hongo, Kenta
    Maezono, Ryo
    [J]. AIP ADVANCES, 2021, 11 (02)
  • [10] Introduction to the diffusion Monte Carlo method
    Kosztin, I
    Faber, B
    Schulten, K
    [J]. AMERICAN JOURNAL OF PHYSICS, 1996, 64 (05) : 633 - 644