Rethinking Online Action Detection in Untrimmed Videos: A Novel Online Evaluation Protocol

被引:5
|
作者
Baptista-Rios, Marcos [1 ]
Lopez-Sastre, Roberto J. [1 ]
Caba Heilbron, Fabian [2 ]
Van Gemert, Jan C. [3 ]
Acevedo-Rodriguez, F. Javier [1 ]
Maldonado-Bascon, Saturnino [1 ]
机构
[1] Univ Alcala, Dept Signal Theory & Commun, GRAM, Alcala De Henares 314100, Spain
[2] Adobe Res, Deep Learning Grp, Media Intelligence Lab, San Jose, CA 95110 USA
[3] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, NL-2628 Delft, Netherlands
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Computer vision; deep learning; evaluation; instantaneous accuracy; online action detection;
D O I
10.1109/ACCESS.2019.2961789
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Online Action Detection (OAD) problem needs to be revisited. Unlike traditional offline action detection approaches, where the evaluation metrics are clear and well established, in the OAD setting we find very few works and no consensus on the evaluation protocols to be used. In this work we propose to rethink the OAD scenario, clearly defining the problem itself and the main characteristics that the models which are considered online must comply with. We also introduce a novel metric: the Instantaneous Accuracy (IA). This new metric exhibits an online nature and solves most of the limitations of the previous metrics. We conduct a thorough experimental evaluation on 3 challenging datasets, where the performance of various baseline methods is compared to that of the state-of-the-art. Our results confirm the problems of the previous evaluation protocols, and suggest that an IA-based protocol is more adequate to the online scenario. The baselines models and a development kit with the novel evaluation protocol will be made publicly available.
引用
收藏
页码:5139 / 5146
页数:8
相关论文
共 50 条
  • [1] StartNet: Online Detection of Action Start in Untrimmed Videos
    Gao, Mingfei
    Xu, Mingze
    Davis, Larry S.
    Socher, Richard
    Xiong, Caiming
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5541 - 5550
  • [2] Online Detection of Action Start in Untrimmed, Streaming Videos
    Shou, Zheng
    Pan, Junting
    Chan, Jonathan
    Miyazawa, Kazuyuki
    Mansour, Hassan
    Vetro, Anthony
    Giro-i-Nieto, Xavier
    Chang, Shih-Fu
    [J]. COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 551 - 568
  • [3] WOAD: Weakly Supervised Online Action Detection in Untrimmed Videos
    Gao, Mingfei
    Zhou, Yingbo
    Xu, Ran
    Socher, Richard
    Xiong, Caiming
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1915 - 1923
  • [4] A novel online action detection framework from untrimmed video streams
    Yoon, Da-Hye
    Cho, Nam-Gyu
    Lee, Seong-Whan
    [J]. PATTERN RECOGNITION, 2020, 106
  • [5] Distribution-Aware Activity Boundary Representation for Online Detection of Action Start in Untrimmed Videos
    Hu, Xuejiao
    Wang, Shijie
    Li, Ming
    Li, Yang
    Du, Sidan
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 765 - 769
  • [6] Gabriella: An Online System for Real-Time Activity Detection in Untrimmed Security Videos
    Rizve, Mamshad Nayeem
    Demir, Ugur
    Tirupattur, Praveen
    Rana, Aayush Jung
    Duarte, Kevin
    Dave, Ishan
    Rawat, Yogesh Singh
    Shah, Mubarak
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4237 - 4244
  • [7] The Instantaneous Accuracy: a Novel Metric for the Problem of Online Human Behaviour Recognition in Untrimmed Videos
    Baptista-Rios, Marcos
    Lopez-Sastre, Roberto J.
    Caba-Heilbron, Fabian
    Van Gemert, Jan
    Javier Acevedo-Rodriguez, F.
    Maldonado-Bascon, Saturnino
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 1282 - 1284
  • [8] Online human action detection and anticipation in videos: A survey
    Hu, Xuejiao
    Dai, Jingzhao
    Li, Ming
    Peng, Chenglei
    Li, Yang
    Du, Sidan
    [J]. Neurocomputing, 2022, 491 : 395 - 413
  • [9] Online human action detection and anticipation in videos: A survey
    Hu, Xuejiao
    Dai, Jingzhao
    Li, Ming
    Peng, Chenglei
    Li, Yang
    Du, Sidan
    [J]. NEUROCOMPUTING, 2022, 491 : 395 - 413
  • [10] Fine-grained Action Detection in Untrimmed Surveillance Videos
    Aakur, Sathyanarayanan
    Sawyer, Daniel
    Sarkar, Sudeep
    [J]. 2019 IEEE WINTER APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2019, : 38 - 40