Understanding Preferences: "Demand Types", and the Existence of Equilibrium With Indivisibilities

被引:51
|
作者
Baldwin, Elizabeth [1 ]
Klemperer, Paul [2 ]
机构
[1] Univ Oxford, Hertford Coll, Oxford, England
[2] Univ Oxford, Nuffield Coll, Oxford, England
关键词
Consumer theory; equilibrium existence; general equilibrium; competitive equilibrium; duality; indivisible goods; geometry; tropical geometry; convex geometry; auction; Product Mix Auction; Product-Mix Auction; substitutes; complements; demand type; matching; COMPETITIVE-EQUILIBRIUM; DISCRETE CONVEXITY; GROSS SUBSTITUTES; WALRASIAN EQUILIBRIUM; UNIMODULAR SYSTEMS; VOLUME; DECOMPOSITION; ALGORITHM; AUCTION; GOODS;
D O I
10.3982/ECTA13693
中图分类号
F [经济];
学科分类号
02 ;
摘要
An Equivalence Theorem between geometric structures and utility functions allows new methods for understanding preferences. Our classification of valuations into "Demand Types" incorporates existing definitions (substitutes, complements, "strong substitutes," etc.) and permits new ones. Our Unimodularity Theorem generalizes previous results about when competitive equilibrium exists for any set of agents whose valuations are all of a "demand type." Contrary to popular belief, equilibrium is guaranteed for more classes of purely-complements than of purely-substitutes, preferences. Our Intersection Count Theorem checks equilibrium existence for combinations of agents with specific valuations by counting the intersection points of geometric objects. Applications include matching and coalition-formation, and the "Product-Mix Auction" introduced by the Bank of England in response to the financial crisis.
引用
收藏
页码:867 / 932
页数:66
相关论文
共 50 条