Real-Time Continuous Phoneme Recognition System Using Class-Dependent Tied-Mixture HMM With HBT Structure for Speech-Driven Lip-Sync

被引:12
|
作者
Park, Junho [1 ]
Ko, Hanseok [1 ]
机构
[1] Korea Univ, Sch Elect Engn, Seoul 136713, South Korea
关键词
Head-body-tail HMM; phoneme recognition; real-time lip-sync;
D O I
10.1109/TMM.2008.2004908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work describes a real-time lip-sync method using which an avatar's lip shape is synchronized with the corresponding speech signal. Phoneme recognition is generally regarded as an important task in the operation of a real-time lip-sync system. In this work, the use of the Head-Body-Tail (HBT) model is proposed for the purpose of more efficiently recognizing phonemes which are variously uttered due to co-articulation effects. The HBT model effectively deals with the transition parts of context-dependent models for small-sized vocabulary tasks. These models provide better recognition performance than general context-dependent or context-independent models for the task of digit or vowel recognition. Moreover, each phoneme is categorized into one among four classes and the class-dependent codebook is generated to further improve the performance. Additionally, for the clear representation of the context dependency information in the transient parts, some Gaussians are excluded from class-dependent codebook. The proposed method leads to a lip-sync system that performs at a level that is similar to previous designs based on HBT and continuous hidden Markov models (CHMMs). However, our method reduces the number of model parameters by one-third and enables real-time operation.
引用
收藏
页码:1299 / 1306
页数:8
相关论文
共 2 条