A hypoplastic model for gas hydrate-bearing sandy sediments

被引:29
|
作者
Zhang, Xuhui [1 ,2 ]
Lin, Jia [3 ]
Lu, Xiaobing [1 ,2 ]
Liu, Lele [4 ]
Liu, Changling [4 ]
Li, Mingyao [5 ]
Su, Yewang [2 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
[3] Univ Nat Resources & Life Sci, Vienna, Austria
[4] Qingdao Inst Marine Geol, Qingdao, Peoples R China
[5] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[6] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
关键词
effective porosity; gas hydrate-bearing sediment; hypo-plastic model; strain hardening; strain softening; ARTIFICIAL METHANE-HYDRATE; MECHANICAL-PROPERTIES; CONSTITUTIVE MODEL; BEHAVIOR; STRENGTH; DISSOCIATION;
D O I
10.1002/nag.2772
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Gas hydrate-bearing sediments (GHBSs) have been considered as a potential energy resource. In this paper, the mechanical properties of GHBS are firstly investigated by the integrated test apparatus for synthesis of GHBS using silty sand as skeleton. Triaxial tests indicate an obvious transition of stress-strain relationship from strain hardening under low hydrate saturation and strain softening under high hydrate saturation. The hypoplastic models coupled with Drucker-Prager criterion and the Mohr-Coulomb criterion are proposed to analyze the stress-strain relationship of GHBS with considering the effective porosity because of the hydrate filling in the pores of GHBS. The strain hardening and softening behaviors are well predicted with less material parameters compared with the classical models. Compared with the test results, the proposed hypoplastic models are verified to be capable of capturing the salient features of the mechanical behaviors of GHBS under the conditions of little temperature change and no hydrate dissociation.
引用
收藏
页码:931 / 942
页数:12
相关论文
共 50 条
  • [1] Hypoplastic model for gas hydrate-bearing sediments considering pore morphology
    Wani, Sahil
    Kandasami, Ramesh Kannan
    Wu, Wei
    COMPUTERS AND GEOTECHNICS, 2025, 181
  • [2] A geomechanical model for gas hydrate-bearing sediments
    Gai, Xuerui
    Sanchez, Marcelo
    ENVIRONMENTAL GEOTECHNICS, 2017, 4 (02): : 143 - 156
  • [3] A cohesionless micromechanical model for gas hydrate-bearing sediments
    Cohen, Eitan
    Klar, Assaf
    GRANULAR MATTER, 2019, 21 (02)
  • [4] Sand production model in gas hydrate-bearing sediments
    Uchida, Shun
    Klar, Assaf
    Yamamoto, Koji
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2016, 86 : 303 - 316
  • [5] A cohesionless micromechanical model for gas hydrate-bearing sediments
    Eitan Cohen
    Assaf Klar
    Granular Matter, 2019, 21
  • [6] An elastoplastic constitutive model for gas hydrate-bearing sediments
    Liu L.
    Yao Y.
    Zhang X.
    Lu X.
    Wang S.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (02): : 556 - 566
  • [7] The Acoustic Properties of Sandy and Clayey Hydrate-Bearing Sediments
    Wang, Xiao-Hui
    Xu, Qiang
    He, Ya-Nan
    Wang, Yun-Fei
    Sun, Yi-Fei
    Sun, Chang-Yu
    Chen, Guang-Jin
    ENERGIES, 2019, 12 (10)
  • [8] A mechanistic model for permeability in deformable gas hydrate-bearing sediments
    Lei, Gang
    Liao, Qinzhuo
    Zhang, Dongxiao
    Patil, Shirish
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 83
  • [9] A generalized critical state model for gas hydrate-bearing sediments
    Yan, Rong-tao
    Wei, Chang-fu
    Wei, Hou-zhen
    Tian, Hui-hui
    Wu, Er-ling
    Springer Series in Geomechanics and Geoengineering, 2013, : 649 - 656
  • [10] A model to predict the elastic properties of gas hydrate-bearing sediments
    Tuan Nguyen-Sy
    Anh-Minh Tang
    Quy-Dong To
    Minh-Ngoc Vu
    JOURNAL OF APPLIED GEOPHYSICS, 2019, 169 : 154 - 164