On the smoothed finite element method

被引:12
|
作者
Zhang, H. -H. [1 ]
Liu, S. -J. [1 ]
Li, L. -X. [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Mech Engn, MOE Key Lab Strength & Vibrat, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
finite element method (FEM); smoothed finite element method (SFEM); shape function;
D O I
10.1002/nme.2460
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently. Liu et al. proposed the smoothed finite element method by using the non-mapped shape functions and then introducing the strain smoothing operator when evaluating the element stiffness in the framework of the finite element method. However, the theories and examples by Liu et al. are not sufficient for general quadrilateral elements. This paper shows that the non-mapped shape functions used in the smoothed finite element have disadvantages in existence, linearity, non-negativity and patch test. Copyright (c) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1285 / 1295
页数:11
相关论文
共 50 条
  • [1] Selective Smoothed Finite Element Method
    T. T. Nguyen
    K. Y. Lam
    [J]. Tsinghua Science and Technology, 2007, (05) : 497 - 508
  • [2] A Smoothed Finite Element Method for Mechanics Problems
    G. R. Liu
    K. Y. Dai
    T. T. Nguyen
    [J]. Computational Mechanics, 2007, 39 : 859 - 877
  • [3] On the approximation in the smoothed finite element method (SFEM)
    Bordas, Stephane P. A.
    Natarajan, Sundararajan
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (05) : 660 - 670
  • [4] A smoothed finite element method for plate analysis
    Nguyen-Xuan, H.
    Rabczuk, T.
    Bordas, Stephane
    Debongnie, J. F.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (13-16) : 1184 - 1203
  • [5] A smoothed finite element method for shell analysis
    Nguyen-Thanh, N.
    Rabczuk, Timon
    Nguyen-Xuan, H.
    Bordas, Stephane P. A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 198 (02) : 165 - 177
  • [6] A smoothed finite element method for mechanics problems
    Liu, G. R.
    Dai, K. Y.
    Nguyen, T. T.
    [J]. COMPUTATIONAL MECHANICS, 2007, 39 (06) : 859 - 877
  • [7] Linear smoothed extended finite element method
    Surendran, M.
    Natarajan, Sundararajan
    Bordas, Stephane P. A.
    Palani, G. S.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 112 (12) : 1733 - 1749
  • [8] Hybrid smoothed finite element method for acoustic problems
    Li, Eric
    He, Z. C.
    Xu, X.
    Liu, G. R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 664 - 688
  • [9] A finite element collocation method with smoothed nodal gradients
    Fan, Liheng
    Wang, Dongdong
    Liu, Yuxiang
    Du, Honghui
    [J]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (02): : 467 - 481
  • [10] Polyhedral smoothed finite element method for thermoelastic analysis
    Hobeom Kim
    Seyoung Im
    [J]. Journal of Mechanical Science and Technology, 2017, 31 : 5937 - 5949