Lithium-Ion Batteries State-of-Charge Estimation Basedon Interactive Multiple-Model Extended Kalman Filter

被引:0
|
作者
Xia Xiaohu [1 ]
Wei Yun [1 ]
机构
[1] Hefei Univ, Dept Mech Engn, Hefei, Peoples R China
关键词
State-of-charge; Interactive mltiple-model; extended Kalman filter; Lithium-ion Batteries;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
in this paper, an accurate algorithm for lithium-ion battery state-of-charge (SOC) estimation is proposed based on the combination of Extended Kalman filter (EKF) and interactive multiple model filter (IMM). Two multiple models are set up to represent the different degree of parameter shift in the Lithium ion battery. Equivalent circuit methodology is used to construct the non-linear battery models. Simulation results indicate that the proposed algorithm is capable of predicting lithium-ion battery State-of-charge. Comparison of accuracy and between the IMM-EKF and standard EKF is made, which prove IMM-EKF is better than standard EKF in estimation of State-of-charge
引用
收藏
页码:204 / 207
页数:4
相关论文
共 50 条
  • [1] State-of-charge Estimation of Lithium-ion Batteries Using Extended Kalman Filter
    Rezoug, Mohamed Redha
    Taibi, Djamel
    Benaouadj, Mahdi
    [J]. 2021 10TH INTERNATIONAL CONFERENCE ON POWER SCIENCE AND ENGINEERING (ICPSE 2021), 2021, : 98 - 103
  • [2] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    [J]. 2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [3] eXogenous Kalman Filter for State-of-Charge Estimation in Lithium-Ion Batteries
    Hasan, Agus
    Skriver, Martin
    Johansen, Tor Arne
    [J]. 2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2018, : 1403 - 1408
  • [4] State-of-charge estimation approach of lithium-ion batteries using an improved extended Kalman filter
    Yu, Xiaowei
    Wei, Jingwen
    Dong, Guangzhong
    Chen, Zonghai
    Zhang, Chenbin
    [J]. INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5097 - 5102
  • [5] Outlier-Robust Extended Kalman Filter for State-of-Charge Estimation of Lithium-Ion Batteries
    Lee, Won Hyung
    Kim, Kwang-Ki K.
    [J]. IEEE ACCESS, 2023, 11 : 132766 - 132779
  • [6] State of Charge Estimation of Lithium-ion Batteries Electrochemical Model with Extended Kalman Filter
    Liu, Yuntian
    Huangfu, Yigeng
    Ma, Rui
    Xu, Liangcai
    Zhao, Dongdong
    Wei, Jiang
    [J]. 2019 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2019,
  • [7] State-of-charge estimation with adaptive extended Kalman filter and extended stochastic gradient algorithm for lithium-ion batteries
    Ye, Yuanmao
    Li, Zhenpeng
    Lin, Jingxiong
    Wang, Xiaolin
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 47
  • [8] Revisiting the State-of-Charge Estimation for Lithium-Ion Batteries A METHODICAL INVESTIGATION OF THE EXTENDED KALMAN FILTER APPROACH
    Wang, Yebin
    Fang, Huazhen
    Zhou, Lei
    Wada, Toshihiro
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2017, 37 (04): : 73 - 96
  • [9] State-of-Charge Estimation Method for Lithium-Ion Batteries Using Extended Kalman Filter With Adaptive Battery Parameters
    Yun, Jaejung
    Choi, Yeonho
    Lee, Jaehyung
    Choi, Seonggon
    Shin, Changseop
    [J]. IEEE ACCESS, 2023, 11 : 90901 - 90915
  • [10] An Adaptive Kalman Filter to Estimate State-of-Charge of Lithium-Ion Batteries
    Luo, Zhiliang
    Li, Yanjie
    Lou, Yunjiang
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 1227 - 1232