A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems

被引:4
|
作者
Fernandez, Damian [1 ]
机构
[1] Natl Univ Cordoba, Fac Math Astron & Phys, FaMAF UNC, Cordoba, Argentina
基金
巴西圣保罗研究基金会;
关键词
Stabilized sequential quadratic programming; Karush-Kuhn-Tucker system; Variational inequality; Quasi-Newton methods; Superlinear convergence; LOCAL CONVERGENCE; ALGORITHM; SQP;
D O I
10.1007/s10107-011-0493-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The quasi-Newton strategy presented in this paper preserves one of the most important features of the stabilized Sequential Quadratic Programming method, the local convergence without constraint qualifications assumptions. It is known that the primal-dual sequence converges quadratically assuming only the second-order sufficient condition. In this work, we show that if the matrices are updated by performing a minimization of a Bregman distance (which includes the classic updates), the quasi-Newton version of the method converges superlinearly without introducing further assumptions. Also, we show that even for an unbounded Lagrange multipliers set, the generated matrices satisfies a bounded deterioration property and the Dennis-Mor, condition.
引用
收藏
页码:199 / 223
页数:25
相关论文
共 50 条
  • [1] A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems
    Damián Fernández
    Mathematical Programming, 2013, 137 : 199 - 223
  • [2] THE QUASI-NEWTON METHOD FOR THE COMPOSITE MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Peng, Jianwen
    Zhang, Xue-Qing
    Zhang, Tao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (10) : 2557 - 2569
  • [3] VARIATIONAL QUASI-NEWTON METHODS FOR UNCONSTRAINED OPTIMIZATION
    ALBAALI, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 77 (01) : 127 - 143
  • [4] A generalized projection quasi-Newton method for nonlinear optimization problems
    Lai, YL
    Gao, ZY
    He, GP
    ANNALS OF OPERATIONS RESEARCH, 1999, 87 (0) : 353 - 362
  • [5] Quasi-Newton methods for multiobjective optimization problems
    Morovati, Vahid
    Basirzadeh, Hadi
    Pourkarimi, Latif
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2018, 16 (03): : 261 - 294
  • [6] Quasi-Newton methods for multiobjective optimization problems
    Vahid Morovati
    Hadi Basirzadeh
    Latif Pourkarimi
    4OR, 2018, 16 : 261 - 294
  • [7] A Survey of Quasi-Newton Equations and Quasi-Newton Methods for Optimization
    Chengxian Xu
    Jianzhong Zhang
    Annals of Operations Research, 2001, 103 : 213 - 234
  • [8] Survey of quasi-Newton equations and quasi-Newton methods for optimization
    Xu, CX
    Zhang, JZ
    ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 213 - 234
  • [9] A quasi-Newton type method for equilibrium problems
    Leonardo A. Sousa
    Susana Scheimberg
    Pedro Jorge S. Santos
    Paulo Sérgio M. Santos
    Numerical Algorithms, 2022, 89 : 1129 - 1143
  • [10] A quasi-Newton type method for equilibrium problems
    Sousa, Leonardo A.
    Scheimberg, Susana
    Santos, Pedro Jorge S.
    Santos, Paulo Sergio M.
    NUMERICAL ALGORITHMS, 2022, 89 (03) : 1129 - 1143