Fractional-dimensional space and applications in quantum-confined semiconducting heterostructures

被引:17
|
作者
deDiosLeyva, M [1 ]
BrunoAlfonso, A [1 ]
MatosAbiague, A [1 ]
Oliveira, LE [1 ]
机构
[1] UNIV HAVANA,DEPT FIS TEOR,HAVANA 10400,CUBA
关键词
D O I
10.1063/1.366267
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a systematic study of excitonic and impurity states in semiconducting quantum wells within a fractional-dimensional space approach, in which the Schrodinger equation is solved in a noninteger-dimensional space where the interactions are assumed to occur in an isotropic effective environment. In this scheme, the fundamental quantity is the parameter D which defines the fractional dimension associated to the effective medium, and to the degree of anisotropy of the interactions. A direct procedure for determining the fractional dimensionality of the isotropic effective space is proposed in which one may obtain a reliable solution for the energies of the actual physical system under consideration. Explicit calculations of the fractional-dimensional D parameter are made in the case of excitons and impurities in infinite-barrier quantum wells, with exciton and impurity binding energies found in excellent agreement with previous variational results. Calculations are also performed for exciton binding energies in finite-barrier quantum wells with good agreement with recent experimental results. (C) 1997 American Institute of Physics.
引用
收藏
页码:3155 / 3157
页数:3
相关论文
共 50 条
  • [1] Deformation of quantum mechanics in fractional-dimensional space
    Matos-Abiague, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (49): : 11059 - 11068
  • [2] Fractional-dimensional space approach for parabolic-confined polarons
    Matos-Abiague, A
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2002, 17 (02) : 150 - 155
  • [3] Excitonic and shallow-donor states in semiconducting quantum wells: a fractional-dimensional space approach
    deDiosLeyva, M
    BrunoAlfonso, A
    MatosAbiague, A
    Oliveira, LE
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (40) : 8477 - 8488
  • [4] A fractional-dimensional space approach to the polaron effect in quantum wells
    Matos-Abiague, A
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (17) : 4543 - 4552
  • [5] Plasma dispersion in fractional-dimensional space
    Mohapatra, K. M.
    Panda, B. K.
    [J]. MODERN PHYSICS LETTERS B, 2014, 28 (20):
  • [6] Shallow-donor states in semiconductor heterostructures within the fractional-dimensional space approach
    Oliveira, LE
    Duque, CA
    Porras-Montenegro, N
    de Dios-Leyva, M
    [J]. PHYSICA B, 2001, 302 : 72 - 76
  • [7] Long-wavelength quantum and classical plasma frequencies in fractional-dimensional space
    Panda, S.
    Panda, B. K.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (48)
  • [8] The fractional-dimensional space approach to impurity states in low-dimensional semiconductor heterostructures under magnetic fields
    Oliveira, LE
    Reyes-Gómez, E
    Perdomo-Leiva, CA
    de Dios-Leyva, M
    [J]. PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, PTS I AND II, 2001, 87 : 1407 - 1408
  • [9] Suppression of the quantum-confined Stark effect in polar nitride heterostructures
    S. Schlichting
    G. M. O. Hönig
    J. Müßener
    P. Hille
    T. Grieb
    S. Westerkamp
    J. Teubert
    J. Schörmann
    M. R. Wagner
    A. Rosenauer
    M. Eickhoff
    A. Hoffmann
    G. Callsen
    [J]. Communications Physics, 1
  • [10] Mapping the spatial distribution of charge carriers in quantum-confined heterostructures
    Andrew M. Smith
    Lucas A. Lane
    Shuming Nie
    [J]. Nature Communications, 5