Predicting Virtual World User Population Fluctuations with Deep Learning

被引:3
|
作者
Kim, Young Bin [1 ]
Park, Nuri [2 ]
Zhang, Qimeng [1 ]
Kim, Jun Gi [3 ]
Kang, Shin Jin [3 ]
Kim, Chang Hun [2 ]
机构
[1] Korea Univ, Interdisciplinary Program Visual Informat Proc, Seoul, South Korea
[2] Korea Univ, Dept Comp & Radio Commun Engn, Seoul, South Korea
[3] Hongik Univ, Sch Games, Seoul, South Korea
来源
PLOS ONE | 2016年 / 11卷 / 12期
基金
新加坡国家研究基金会;
关键词
GAME; FORECASTS; NETWORKS; PATTERNS; BEHAVIOR; LIFE;
D O I
10.1371/journal.pone.0167153
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper proposes a system for predicting increases in virtual world user actions. The virtual world user population is a very important aspect of these worlds; however, methods for predicting fluctuations in these populations have not been well documented. Therefore, we attempt to predict changes in virtual world user populations with deep learning, using easily accessible online data, including formal datasets from Google Trends, Wikipedia, and online communities, as well as informal datasets collected from online forums. We use the proposed system to analyze the user population of EVE Online, one of the largest virtual worlds.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Predicting user visual attention in virtual reality with a deep learning model
    Xiangdong Li
    Yifei Shan
    Wenqian Chen
    Yue Wu
    Praben Hansen
    Simon Perrault
    [J]. Virtual Reality, 2021, 25 : 1123 - 1136
  • [2] A Blended Deep Learning Approach for Predicting User Intended Actions
    Tan, Fei
    Wei, Zhi
    He, Jun
    Wu, Xiang
    Peng, Bo
    Liu, Haoran
    Yan, Zhenyu
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 487 - 496
  • [3] A deep learning framework for predicting the student's performance in the virtual learning environment
    Ahmed, Soha
    Helmy, Yehia
    Ouf, Shimaa
    [J]. 5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 240 - 250
  • [4] Predicting User Posting Activities in Online Health Communities with Deep Learning
    Wang, Xiangyu
    Zhao, Kang
    Zhou, Xun
    Street, Nick
    [J]. ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2020, 11 (03)
  • [5] Round earth project: deep learning in a collaborative virtual world
    Univ of Illinois at Chicago, Chicago, United States
    [J]. Proc Virtual Real Annu Int Symp, (164-171):
  • [6] The Round Earth Project: Deep learning in a collaborative virtual world
    Johnson, A
    Moher, T
    Ohlsson, S
    Gillingham, M
    [J]. IEEE VIRTUAL REALITY - PROCEEDINGS, 1999, : 164 - 171
  • [7] Virtual world in user's eye
    不详
    [J]. PROFESSIONAL ENGINEERING, 1997, 10 (08) : 38 - 38
  • [8] Statistical properties of user activity fluctuations in virtual worlds
    Yang, Yan-Hong
    Xie, Wen-Jie
    Li, Ming-Xia
    Jiang, Zhi-Qiang
    Zhou, Wei-Xing
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 105 : 271 - 278
  • [9] Learning in a virtual world
    Chin, K
    [J]. CHEMICAL ENGINEERING, 2000, 107 (13) : 107 - +
  • [10] Predicting user visual attention in virtual reality with a deep learning model (Apr, 10.1007/s10055-021-00512-7, 2021)
    Li, Xiangdong
    Shan, Yifei
    Chen, Wenqian
    Wu, Yue
    Hansen, Preben
    Perrault, Simon
    [J]. VIRTUAL REALITY, 2021, 25 (04) : 1137 - 1137