MULTI-FIDELITY SIMULATION OPTIMISATION FOR AIRLINE DISRUPTION MANAGEMENT

被引:0
|
作者
Rhodes-Leader, Luke [1 ]
Worthington, David J. [1 ]
Nelson, Barry L. [1 ]
Onggo, Bhakti Stephan [2 ]
机构
[1] Univ Lancaster, STOR i CDT, Lancaster LA1 4YR, England
[2] Trinity Coll Dublin, Trinity Business Sch, Dublin 2, Ireland
基金
英国工程与自然科学研究理事会;
关键词
SCHEDULE RECOVERY; METAHEURISTICS; AIRCRAFT;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The airline industry faces many causes of disruption. To minimise financial and reputational impact, the airline must adapt its schedules. Due to the complexity of the environment, simulation is a natural modelling approach. However, the large solution space, time constraints and system constraints make the search for revised schedules difficult. This paper presents a method for the aircraft recovery problem that uses multi-fidelity modelling including a trust region simulation optimisation algorithm to mitigate the computational costs of using high-fidelity simulations with its benefits for providing good estimates of the true performance.
引用
收藏
页码:2179 / 2190
页数:12
相关论文
共 50 条
  • [1] A multi-fidelity modelling approach for airline disruption management using simulation
    Rhodes-Leader, L. A.
    Nelson, B. L.
    Onggo, B. S.
    Worthington, D. J.
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2022, 73 (10) : 2228 - 2241
  • [2] AIRLINE DISRUPTION RECOVERY USING SYMBIOTIC SIMULATION AND MULTI-FIDELITY MODELLING
    Onggo, Bhakti Stephan
    [J]. 2017 WINTER SIMULATION CONFERENCE (WSC), 2017, : 4588 - 4589
  • [3] Multi-fidelity Bayesian Optimisation with Continuous Approximations
    Kandasamy, Kirthevasan
    Dasarathy, Gautam
    Schneider, Jeff
    Poczos, Barnabas
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [4] Multi-fidelity Gaussian Process Bandit Optimisation
    Kandasamy, Kirthevasan
    Dasarathy, Gautam
    Oliva, Junier
    Schneider, Jeff
    Poczos, Barnabas
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2019, 66 : 151 - 196
  • [5] Semiconductor wafer fabrication production planning using multi-fidelity simulation optimisation
    Zhang, Fan
    Song, Jie
    Dai, Yingzhuo
    Xu, Jie
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2020, 58 (21) : 6585 - 6600
  • [6] EFFICIENT MULTI-FIDELITY SIMULATION OPTIMIZATION
    Xu, Jie
    Zhang, Si
    Huang, Edward
    Chen, Chun-Hung
    Lee, Loo Hay
    Celik, Nurcin
    [J]. PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 3940 - 3951
  • [7] Nacelle optimisation through multi-fidelity neural networks
    Sanchez-Moreno, Francisco
    MacManus, David
    Tejero, Fernando
    Sheaf, Christopher
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2024, 34 (09) : 3615 - 3634
  • [8] Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations
    Kandasamy, Kirthevasan
    Dasarathy, Gautam
    Oliva, Junier
    Schneider, Jeff
    Poczos, Barnabas
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [9] MULTI-FIDELITY DESIGN OPTIMISATION OF A TRANSONIC COMPRESSOR ROTOR
    Brooks, C. J.
    Forrester, A. I. J.
    Keane, A. J.
    Shahpar, S.
    [J]. 9TH EUROPEAN CONFERENCE ON TURBOMACHINERY: FLUID DYNAMICS AND THERMODYNAMICS, VOLS I AND II, 2011, : 1267 - 1276
  • [10] MULTI-FIDELITY DISCRETE OPTIMIZATION VIA SIMULATION
    Li, Dongyang
    Liu, Haitao
    Jin, Xiao
    Li, Haobin
    Chew, Ek Peng
    Tan, Kok Choon
    Lin, Yun Hui
    [J]. 2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 3170 - 3181