THE GENERALIZED FERMAT CONJECTURE

被引:0
|
作者
Garcia-Maynez, Adalberto [1 ]
Gary, Margarita [2 ]
Pimienta Acosta, Adolfo [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Area Invest Cient Circuito Exterior, Ciudad Univ Coyoacan, Mexico City 04510, DF, Mexico
[2] Univ Costa, CUC, Dept Ciencias Nat & Exactas, Calle 58 55-66, Barranquilla, Colombia
[3] Univ Simon Bolivar, Fac Ciencias Basicas & Biomed, Calle 58 55-132, Barranquilla, Colombia
关键词
tangent; Fermat curve; Chebyshev polynomials;
D O I
10.1515/ms-2017-0225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a; b; c are non-zero integers, we considerer the following problem: for which values of n the line ax + by + cz = 0 may be tangent to the curve x(n) + y(n) = z(n) ? We give a partial solution: if n = 5 or if n 1 is a prime a number, then the answer is the line cannot be tangent to the curve. This problem is strongly related to Fermat' s Last Theorem. (C) 2019 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:321 / 326
页数:6
相关论文
共 50 条
  • [1] The Fermat conjecture
    Moriya, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1933, 169 (1/4): : 92 - 97
  • [2] LINES ON THE FERMAT QUINTIC THREEFOLD AND THE INFINITESIMAL GENERALIZED HODGE-CONJECTURE
    ALBANO, A
    KATZ, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (01) : 353 - 368
  • [3] Refinement of a generalized Fermat’s last theorem conjecture in natural vector spaces
    Ramon Carbó-Dorca
    Camelia Muñoz-Caro
    Alfonso Niño
    Sebastián Reyes
    Journal of Mathematical Chemistry, 2017, 55 : 1869 - 1877
  • [5] Refinement of a generalized Fermat's last theorem conjecture in natural vector spaces
    Carbo-Dorca, Ramon
    Munoz-Caro, Camelia
    Nino, Alfonso
    Reyes, Sebastian
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2017, 55 (09) : 1869 - 1877
  • [6] HODGE CONJECTURE FOR FERMAT VARIETIES
    SHIODA, T
    MATHEMATISCHE ANNALEN, 1979, 245 (02) : 175 - 184
  • [7] JESMANOWICZ' CONJECTURE WITH FERMAT NUMBERS
    Tang, Min
    Weng, Jian-Xin
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (03): : 925 - 930
  • [8] Integral Hodge conjecture for Fermat varieties
    Aljovin, Enzo
    Movasati, Hossein
    Loyola, Roberto Villaflor
    JOURNAL OF SYMBOLIC COMPUTATION, 2019, 95 : 177 - 184
  • [9] Sur la conjecture de fermat
    Casanova G.
    Advances in Applied Clifford Algebras, 2005, 15 (1) : 151 - 155
  • [10] Goldbach conjecture and Fermat's theorem
    幸义淞
    青少年日记(教育教学研究), 2018, (09) : 241 - 241