FCM Classifier for High-dimensional Data

被引:0
|
作者
Ichihashi, Hidetomo [1 ]
Honda, Katsuhiro [1 ]
Notsu, Akira [1 ]
Miyamoto, Eri [1 ]
机构
[1] Osaka Prefecture Univ, Dept Comp Sci & Intelligent Syst, Naka Ku, Osaka 5998531, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A fuzzy classifier based on the fuzzy c-means (FCM) clustering has shown a decisive generalization ability in classification. The FCM classifier uses covariance structures to represent flexible shapes of clusters. Despite its effectiveness, the intense computation of covariance matrices is an impediment for classifying a set of high-dimensional data. This paper proposes a way of directly handling high-dimensional data in the FCM clustering and classification. The proposed classifier without any preprocessing outperforms the k-nearest neighbor (k-NN) classifier with PCA on the benchmark set of COREL image collection.
引用
收藏
页码:200 / 206
页数:7
相关论文
共 50 条
  • [1] Geometric Classifier for Multiclass, High-Dimensional Data
    Aoshima, Makoto
    Yata, Kazuyoshi
    [J]. SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2015, 34 (03): : 279 - 294
  • [2] Discriminative Ridge Machine: A Classifier for High-Dimensional Data or Imbalanced Data
    Peng, Chong
    Cheng, Qiang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) : 2595 - 2609
  • [3] EVCA Classifier: A MCMC-Based Classifier for Analyzing High-Dimensional Big Data
    Vlachou, Eleni
    Karras, Christos
    Karras, Aristeidis
    Tsolis, Dimitrios
    Sioutas, Spyros
    [J]. INFORMATION, 2023, 14 (08)
  • [4] Bagging-AdaTSK: An Ensemble Fuzzy Classifier for High-Dimensional Data
    Xue, Guangdong
    Zhang, Bingjie
    Gong, Xiaoling
    Wang, Jian
    [J]. INTELLIGENT COMPUTING METHODOLOGIES, PT III, 2022, 13395 : 32 - 43
  • [5] Semi-supervised classifier ensemble model for high-dimensional data
    Niu, Xufeng
    Ma, Wenping
    [J]. INFORMATION SCIENCES, 2023, 643
  • [6] An adaptive classifier design for high-dimensional data analysis with a limited training data set
    Jackson, Q
    Landgrebe, DA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (12): : 2664 - 2679
  • [7] A decision tree classifier design for high-dimensional data with limited training samples
    Tadjudin, S
    Landgrebe, DA
    [J]. IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 790 - 792
  • [8] Estimation of misclassification probability for a distance-based classifier in high-dimensional data
    Watanabe, Hiroki
    Hyodo, Masashi
    Yamada, Yuki
    Seo, Takashi
    [J]. HIROSHIMA MATHEMATICAL JOURNAL, 2019, 49 (02) : 175 - 193
  • [9] A U-classifier for high-dimensional data under non-normality
    Ahmad, M. Rauf
    Pavlenko, Tatjana
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 167 : 269 - 283
  • [10] Classifier Ensemble Based on Multiview Optimization for High-Dimensional Imbalanced Data Classification
    Xu, Yuhong
    Yu, Zhiwen
    Chen, C. L. Philip
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 870 - 883