INVESTIGATING NONPARAMETRIC PRIORS WITH GIBBS STRUCTURE

被引:0
|
作者
Lijoi, Antonio [1 ,2 ]
Prunster, Igor [3 ,4 ]
Walker, Stephen G. [5 ]
机构
[1] Univ Pavia, Dipartimento Econ Polit & Metodi Quantitativi, I-27100 Pavia, Italy
[2] CNR IMATI, Milan, Italy
[3] Univ Turin, Coll Carlo Alberto, Dipartimento Stat & Matemat Applicata, I-10134 Turin, Italy
[4] Univ Turin, ICER, I-10134 Turin, Italy
[5] Univ Kent, Inst Math Stat & Actuarial Sci, Canterbury CT2 7NZ, Kent, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian nonparametrics; Gibbs exchangeable partitions; generalized gamma process; normalized random measures with independent increments; recursive equation; stable distribution;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates nonparametric priors that induce infinite Gibbs-type partitions; such a feature is desirable both from a conceptual and a mathematical point of view. Recently it has been shown that Gibbs-type priors, with sigma is an element of (0, 1), are equivalent to sigma-stable Poisson-Kingman models. By looking at solutions to a recursive equation arising through Gibbs partitions, we provide an alternative proof of this fundamental result. Since practical implementation of general sigma-stable Poisson-Kingman models is difficult, we focus on a related class of priors, namely normalized random measures with independent increments; these are easily implementable in complex Bayesian models. We establish the result that the only Gibbs-type priors within this class are those based on a generalized gamma random measure.
引用
收藏
页码:1653 / 1668
页数:16
相关论文
共 50 条
  • [1] Gibbs Priors for Bayesian Nonparametric Variable Selection with Weak Learners
    Linero, Antonio R.
    Du, Junliang
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 1046 - 1059
  • [2] A note on nonparametric inference for species variety with Gibbs-type priors
    Favaro, Stefano
    James, Lancelot F.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2884 - 2902
  • [3] Gibbs sampling, conjugate priors and coupling
    Persi Diaconis
    Kshitij Khare
    Laurent Saloff-Coste
    [J]. Sankhya A, 2010, 72 (1): : 136 - 169
  • [4] Gibbs Sampling, Conjugate Priors and Coupling
    Diaconis, Persi
    Khare, Kshitij
    Saloff-Coste, Laurent
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2010, 72 (01): : 136 - 169
  • [5] Contaminated Gibbs-Type Priors
    Camerlenghi, Federico
    Corradin, Riccardo
    Ongaro, Andrea
    [J]. BAYESIAN ANALYSIS, 2024, 19 (02): : 347 - 376
  • [6] IMAGE-MODELING GIBBS PRIORS
    LEVITAN, E
    CHAN, M
    HERMAN, GT
    [J]. GRAPHICAL MODELS AND IMAGE PROCESSING, 1995, 57 (02): : 117 - 130
  • [7] Latent Nested Nonparametric Priors (with Discussion)
    Camerlenghi, Federico
    Dunson, David B.
    Lijoi, Antonio
    Prunster, Igor
    Rodriguez, Abel
    [J]. BAYESIAN ANALYSIS, 2019, 14 (04): : 1303 - 1356
  • [8] RANDOM EFFECTS MODELS WITH NONPARAMETRIC PRIORS
    BUTLER, SM
    LOUIS, TA
    [J]. STATISTICS IN MEDICINE, 1992, 11 (14-15) : 1981 - 2000
  • [9] Nonparametric Markov priors for tissue segmentation
    Song, Zhuang
    Awate, Suyash R.
    Gee, James C.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 73 - +
  • [10] NONPARAMETRIC PRIORS FOR VECTORS OF SURVIVAL FUNCTIONS
    Epifani, Ilenia
    Lijoi, Antonio
    [J]. STATISTICA SINICA, 2010, 20 (04) : 1455 - 1484