Exact results for a Kondo problem in a one-dimensional t-J model

被引:70
|
作者
Wang, YP
Dai, JH
Hu, ZN
Pu, FC
机构
[1] ZHEJIANG UNIV,ZHEJIANG INST MODERN PHYS,HANGZHOU 310027,PEOPLES R CHINA
[2] CHINESE ACAD SCI,INST PHYS,BEIJING 100080,PEOPLES R CHINA
[3] GUANGZHOU TEACHER COLL,DEPT PHYS,GUANGZHOU 510400,PEOPLES R CHINA
关键词
D O I
10.1103/PhysRevLett.79.1901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an integrable Kondo problem in a one-dimensional t-J model. With the open boundary condition of the wave functions at the impurity sites, the model can be exactly solved via Bethe ansatz for a set of J(L,R) (Kondo coupling constants) and V-L,V-R (impurity potentials) parametrized by a single parameter c. The integrable value of J(L,R) runs from negative infinity to positive infinity, which allows us to study both the ferromagnetic Kondo problem and the antiferromagnetic Kondo problem in a strongly correlated electron system. Generally, there is a residual entropy for the ground state, which indicates a typical non-Fermi liquid behavior.
引用
收藏
页码:1901 / 1904
页数:4
相关论文
共 50 条